Advertisement

Modeling of AA5083 Material-Microstructure Evolution During Butt Friction-Stir Welding

  • M. Grujicic
  • G. Arakere
  • H. V. Yalavarthy
  • T. He
  • C.-F. Yen
  • B. A. Cheeseman
Article

Abstract

A concise yet a fairly comprehensive overview of the friction stir welding (FSW) process is provided. This is followed by a computational investigation in which FSW behavior of a prototypical solution-strengthened and strain-hardened aluminum alloy, AA5083-H131, is modeled using a fully coupled thermo-mechanical finite-element procedure developed in our prior study. Particular attention is given to proper modeling of the welding work-piece material behavior during the FSW process. Specifically, competition and interactions between plastic-deformation and dynamic-recrystallization processes are considered to properly account for the material-microstructure evolution in the weld nugget zone. The results showed that with proper modeling of the material behavior under high-temperature/severe-plastic-deformation conditions, significantly improved agreement can be attained between the computed and measured post-FSW residual-stress and material-strength distribution results.

Keywords

AA5083 finite element analysis friction stir welding Johnson-Cook strength model 

Notes

Acknowledgments

This research article is based on project with financial support under the U.S. Army/Clemson University Cooperative Agreements, W911NF-04-2-0024 and W911NF-06-2-0042.

References

  1. 1.
    W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Murch, P. Temple-Smith, and C.J. Dawes. Friction Stir Butt Welding, International Patent Application No. PCT/GB92/02203, 1991Google Scholar
  2. 2.
    C.J. Dawes and W.M. Thomas, Friction Stir Process Welds Aluminum Alloys, Weld. J., 1996, 75, p 41–52Google Scholar
  3. 3.
    W.M. Thomas and R.E. Dolby, Friction Stir Welding Developments, Proceedings of the Sixth International Trends in Welding Research, S.A. David, T. DebRoy, J.C. Lippold, H.B. Smartt, and J.M. Vitek, Ed. (Materials Park, OH, USA), ASM International, 2003, p 203–211Google Scholar
  4. 4.
    R. Nandan, T. DebRoy, and H.K.D.H. Bhadeshia, Recent Advances in Friction-Stir Welding—Process, Weldment Structure and Properties, Prog. Mater. Sci., 2008, 53, p 980–1023CrossRefGoogle Scholar
  5. 5.
    M. Grujicic, T. He, G. Arakere, H.V. Yalavarthy, C.-F. Yen, and B.A. Cheeseman, Fully-Coupled Thermo-Mechanical Finite-Element Investigation of Material Evolution During Friction-Stir Welding of Aa5083, J. Eng. Manuf., Sept 2009 (accepted for publication).Google Scholar
  6. 6.
    M.B. Bever, D.L. Holt, and A.L. Titchener, Stored Energy of Cold Work, Prog. Mater. Sci., 1973, 17, p 5–192CrossRefGoogle Scholar
  7. 7.
    Q. Zhu, C.M. Sellars, and H.K.D.H. Bhadeshia, Quantitative Metallography of Deformed Grains, Mater. Sci. Technol., 2007, 23(7), p 757–766CrossRefGoogle Scholar
  8. 8.
    M.V. Belous and V.T. Cherepin, Changes in the Steel Carbide Phase Under Influence of Cold Plastic Deformation, Fiz. Met. Metalloved, 1962, 14, p 48–54Google Scholar
  9. 9.
    F. Danoix, D. Julien, X. Sauvage, and J. Copreaux, Direct Evidence of Cementite Dissolution in Drawn Pearlitic Steels Observed by Tomographic Atom Probe, Mater. Sci. Eng. A, 1998, 250, p 8–13CrossRefGoogle Scholar
  10. 10.
    M. Umemoto, Z.G. Liu, X.J. Hao, K. Masuyama, and K. Tsuchiya, Formation of Nanocrystalline Ferrite Through Rolling and Ball Milling, Mater. Sci. Forum, 2001, 12, p 167–174CrossRefGoogle Scholar
  11. 11.
    Y. Ivanisenko, I. MacLaren, R.Z. Valiev, and H.J. Fecht, First Observation of a Shear-Induced Bcc to Fcc Transformation in Nanocrystalline Ferrite, Adv. Eng. Mater., 2005, 7, p 1011–1014CrossRefGoogle Scholar
  12. 12.
    W. Lojkowski, Yu. Ivanisenko, and H.-J. Fecht, Strain Induced Cementite Dissolution in Pearlitic Steels as a Classical Example of Mechanical Alloying, Trans. Indian Inst. Met., 2005, 13, p 939–1227Google Scholar
  13. 13.
    E.S. Gorkunov, S.V. Grachev, S.V. Smirnov, V.M. Somova, S.M. Zadvorkin, and L.E. Kar’kina, Relation of Physical-Mechanical Properties to the Structural Condition of Severely Deformed Patented Carbon Steels at Drawing, Russ. J. Nondestruct. Test., 2005, 41, p 65–79CrossRefGoogle Scholar
  14. 14.
    M.J. Russell and H. Shercliff, Analytical Modelling of Friction Stir Welding, INALCO’98: Seventh International Conference on Joints in Aluminium, M.J. Russell and R. Shercliff R, Ed. (Cambridge, UK) TWI, 1999, p 197–207Google Scholar
  15. 15.
    M.Z.H. Khandkar, J.A. Khan, and A.P. Reynolds, Prediction of Temperature Distribution and Thermal History During Friction Stir Welding: Input Torque Based Model, Sci. Technol. Weld. Join., 2003, 10, p 165–174CrossRefGoogle Scholar
  16. 16.
    S. Xu, X. Deng, A.P. Reynolds, and T.U. Seidel, Finite Element Simulation of Material Flow in Friction Stir Welding, Sci. Technol. Weld. Join., 2001, 6, p 191–193CrossRefGoogle Scholar
  17. 17.
    K.V. Jata and S.L. Semiatin, Continuous Dynamic Recrystallization During Friction Stir Welding, Scripta Mater., 2000, 12, p 743–748Google Scholar
  18. 18.
    R. Nandan, G.G. Roy, and T. DebRoy, Numerical Simulation of Three-Dimensional Heat Transfer and Plastic Flow During Friction Stir Welding, Metall. Mater. Trans. A, 2006, 37, p 1247–1259CrossRefGoogle Scholar
  19. 19.
    R. Nandan, G.G. Roy, and T. DebRoy, Three-Dimensional Heat and Material Flow During Friction Stir Welding of Mild Steel, Acta Mater., 2007, 12, p 883–895CrossRefGoogle Scholar
  20. 20.
    R. Nandan, T.J. Lienert, and T. DebRoy, Toward Reliable Calculations of Heat and Plastic Flow During Friction Stir Welding of Ti-6Al-4V Alloy, Int. J. Mater. Res., 2008, 9, p 434–444Google Scholar
  21. 21.
    P.J. Withers and H.K.D.H. Bhadeshia, Residual Stress. Part II: Nature and Origins, Mater. Sci. Technol., 2001, 17, p 366–375CrossRefGoogle Scholar
  22. 22.
    J.A. Francis, H.J. Stone, S. Kundu, R.B. Rogge, H.K.D.H. Bhadeshia, and P.J. Withers, Transformation Temperatures and Welding Residual Stresses in Ferritic Steels, Proceedings of PVP2007, ASME Pressure Vessels and Piping Division Conference (San Antonio, Texas), American Society of Mechanical Engineers (ASME), 2007, p 1–8Google Scholar
  23. 23.
    H.N.B. Schmidt, T.L. Dickerson, and J.H. Hattel, Material Flow in Butt Friction Stir Welds in AA2024-T3, Acta Mater., 2006, 54(4), p 1199–1209Google Scholar
  24. 24.
    L. Fratini, G. Buffa, D. Palmeri, J. Hua, and R. Shivpuri, Material Flow in FSW of AA7075-T6 Butt Joints: Numerical Simulations and Experimental Verifications, Sci. Technol. Weld. Join., 2006, 11(4), p 412–421CrossRefGoogle Scholar
  25. 25.
    M.Z.H. Khandkar, J.A. Khan, and A.P. Reynolds, Prediction of Temperature Distribution and Thermal History During Friction Stir Welding: Input Torque Based Model, Sci. Technol. Weld. Join., 2003, 8, p 165–174CrossRefGoogle Scholar
  26. 26.
    K.V. Jata and S.L. Semiatin, Continuous Dynamic Recrystallization During Friction Stir Welding, Scripta Mater., 2000, 12, p 743–748Google Scholar
  27. 27.
    R. Nandan, T.J. Lienert, and T. DebRoy, Toward Reliable Calculations of Heat and Plastic Flow During Friction Stir Welding of Ti-6Al-4V Alloy, Int. J. Mater. Res., 2008, 99, p 434–444Google Scholar
  28. 28.
    Y. Sato, M. Urata, and H. Kokawa, Parameters Controlling Microstructure and Hardness During Friction-Stir Welding of Precipitation-Hardenable Aluminum Alloy 6063, Metall. Mater. Trans. A, 2002, 33(3), p 625–635CrossRefGoogle Scholar
  29. 29.
    M.J. Peel, A. Steuwer, P.J. Withers, T. Dickerson, Q. Shi, and H. Shercliff, Dissimilar Friction Stir Welds in AA5083-AA6082. Part I: Process Parameter Effects on Thermal History and Weld Properties, Metall. Mater. Trans. A, 2006, 37(7), p 2183–2193CrossRefGoogle Scholar
  30. 30.
    W.M. Thomas, K.I. Johnson, and C.S. Wiesner, Friction Stir Welding-Recent Developments in Tool and Process Technologies, Adv. Eng. Mater., 2003, 5, p 485–490CrossRefGoogle Scholar
  31. 31.
    W.M. Thomas, Friction Stir Welding—Recent Developments, Mater. Sci. Forum, 2003, 426–432, p 229–236CrossRefGoogle Scholar
  32. 32.
    W.M. Thomas, D.G. Staines, K.I. Johnsonand, and P. Evans, Com-Stir—Compound Motion for Friction Stir Welding and Machining, Adv. Eng. Mater., 2003, 5, p 273–274Google Scholar
  33. 33.
    Y.H. Zhao, S.B. Lin, F. Qu, and L. Wu, Influence of Pin Geometry on Material Flow in Friction Stir Welding Process, Mater. Sci. Technol., 2006, 22, p 45–50CrossRefGoogle Scholar
  34. 34.
    R. Crawford, G.E. Cook, A.M. Strauss, D.A. Hartman, and M.A. Stremler, Experimental Defect Analysis and Force Prediction Simulation of High Weld Pitch Friction Stir Welding, Sci. Technol. Weld. Join., 2006, 11, p 657–665CrossRefGoogle Scholar
  35. 35.
    H.J. Liu, H. Fujii, M. Maeda, and K. Nogi, Tensile Fracture Location Characterisation of Friction Stir Welded Joints of Different Aluminium Alloys, J. Mater. Sci. Technol., 2004, 20, p 103–105Google Scholar
  36. 36.
    X. Long and S.K. Khanna, Modelling of Electrically Enhanced Friction Stir Welding Process Using Finite Element Method, Sci. Technol. Weld. Join., 2005, 10, p 482–487CrossRefGoogle Scholar
  37. 37.
    Y.G. Kimand, H. Fujii, T. Tsumura, T. Komazaki, and K. Nakata, Three Defect Types in Friction Stir Welding of Aluminium Die Casting Alloys, Mater. Sci. Eng. A, 2006, 415, p 250–254CrossRefGoogle Scholar
  38. 38.
    K. Elangovan and V. Balasubramanian, Influences of Pin Profile and Rotational Speed of the Tool on the Formation of Friction Stir Processing Zone in AA2219 Aluminium Alloy, Mater. Sci. Eng. A, 2007, 459, p 7–18CrossRefGoogle Scholar
  39. 39.
    P.J. Withers and H.K.D.H. Bhadeshia, Residual Stress. Part 1: Measurement Techniques, Mater. Sci. Technol., 2001, 17, p 355–365CrossRefGoogle Scholar
  40. 40.
    M. Peel, A. Steuwer, M. Preuss, and P.J. Withers, Microstructure, Mechanical Properties and Residual Stresses as a Function of Welding Speed in Aluminium AA5083 Friction Stir Welds, Acta Mater., 2003, 51(16), p 4791–4801CrossRefGoogle Scholar
  41. 41.
    M.Z.H. Khandkar, J.A. Khan, A.P. Reynolds, and M.A. Sutton, Predicting Residual Thermal Stresses in Friction Stir Welded Metals, J. Mater. Process. Technol., 2006, 174, p 195–203CrossRefGoogle Scholar
  42. 42.
    ABAQUS Version 6.8-1, User Documentation, Dassault Systems, 2008, p 1–254Google Scholar
  43. 43.
    G.R. Johnson and W.H. Cook, A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures, Proceedings of the 7th International Symposium on Ballistics, 1983Google Scholar
  44. 44.
    K. Kannan, J.S. Vetrano, and C.H. Hamilton, Effects of Alloy Modification and Thermomechanical Processing on Recrystallization of Al-Mg-Mn Alloys, Metall. Mater. Trans. A, 1996, 27(10), p 2947–2957CrossRefGoogle Scholar
  45. 45.
    R.E. Reed-Hill, Physical Metallurgy Principles, PWS Publishing Company, Massachusetts, 1994Google Scholar
  46. 46.
    D.C. Hofmann and K.S. Vecchio, Thermal History Analysis of Friction Stir Processed and Submerged Friction Stir Processed Aluminum, Mater. Sci. Eng. A, 2007, 465(1–2), p 165–175Google Scholar
  47. 47.
    W. Woo, Z. Feng, X.L. Wang, D.W. Brown, B. Clausen, and K. An, In Situ Neutron Diffraction Measurements of Temperature and Stresses During Friction Stir Welding of 6061-T6 Aluminium Alloy, Sci. Technol. Weld. Join., 2007, 12(4), p 298–303CrossRefGoogle Scholar

Copyright information

© ASM International 2009

Authors and Affiliations

  • M. Grujicic
    • 1
  • G. Arakere
    • 1
  • H. V. Yalavarthy
    • 1
  • T. He
    • 1
  • C.-F. Yen
    • 2
  • B. A. Cheeseman
    • 2
  1. 1.Department of Mechanical EngineeringClemson UniversityClemsonUSA
  2. 2.Army Research Laboratory – Survivability Materials BranchAberdeen Proving GroundUSA

Personalised recommendations