Microstructural Observations in a Cast Al-Si-Cu/TiC Composite

  • A. E. Karantzalis
  • A. Lekatou
  • E. Georgatis
  • V. Poulas
  • H. Mavros


A 3-5 vol.% TiC particulate Al-Si-Cu composite was prepared by diluting Al/20 vol.% TiC composite in an Al-7Si-4Cu alloy matrix. TiC particle distribution consists of isolated and clustered particles which are both located at the primary-α grain boundaries and at the areas of the last solidified liquid. Particle pushing by the solidification front is responsible for the final particle location. The solidified microstructure consists of primary and intermetallic phases formed by a sequence of possible eutectic reactions. No evidence of TiC particle degradation was observed.


Al-alloy cast structures Aluminum matrix composites Particle-melt interactions Particle-solidifying front interactions TiC particulates Wetting 



The authors wish to thank Dr. V. Drakopoulos, Principal Scientist of the Institute of Chemical Engineering and High Temperature Process of the Foundation of Research, Greece, for his assistance in the XRD and EBSD—SEM analysis, and Mr. A. Katsoulidis, Post-graduate student of the Chemistry Department of the University of Ioannina, Greece, for his assistance in the SEM examination.


  1. 1.
    D. J. Lloyd, Particle Reinforced Aluminium and Magnesium Matrix Composites, Int. Mater. Rev., vol. 39, 1999, p. 1-23.Google Scholar
  2. 2.
    P.K. Rohatgi, R. Asthana and S. Das, Solidification, Structures and Properties of Cast Metal-Ceramic Particle Composites, Int. Mater. Rev., vol. 31, 1986, p. 115-139.Google Scholar
  3. 3.
    A. Mortensen and I. Jin, Solidification Processing of Metal Matrix Composites, Int. Mater. Rev., vol. 37, 1992, p. 101-128.Google Scholar
  4. 4.
    P. K. Rohatgi, S. Ray, R. Asthana and C. S. Narendranath, Interfaces in Cast Metal Matrix Composites, Mater. Sci. Eng. A162, 1993, p. 163-174.Google Scholar
  5. 5.
    R. Asthana and S.N. Tewari, Interfacial and capillary phenomena in solidification processing of metal matrix composites, Compos. Manuf., vol. 4, No. 1, 1993, p. 3-25.CrossRefGoogle Scholar
  6. 6.
    J. M. Howe, Bonding, structure and properties of metal/ceramic interfaces: Part 1 chemical bonding, chemical reaction and interfacial structure, Int. Mater. Rev., vol. 38, No. 5, 1993, p. 233-256.Google Scholar
  7. 7.
    A. R. Kennedy and A. E. Karantzalis, The incorporation of ceramic particles in molten aluminium and the relationship to contact angle data, Mater. Sci. Eng., A264, No. 1–2, 1999, p. 122-129.Google Scholar
  8. 8.
    A.E. Karantzalis, S. Wyatt, A.R. Kennedy, The mechanical properties of Al-TiC metal matrix composites fabricated by a flux-casting technique, Mater. Sci. Eng. A237, No. 2, 1997, p. 200-206.Google Scholar
  9. 9.
    A.M. Zubko, V.G. Lobanov, V.V. Nikonova, Reaction of foreign particles with a crystallization front, Soviet Physics Crystallography, vol. 18, No.2, 1973, p. 239-241.Google Scholar
  10. 10.
    M.K. Surrapa and P.K. Rohatgi, Heat diffusivity criterion for the entrapment of particles by a moving solid-liquid interface, J. Mater. Sci., vol. 16, (2), 1981, p. 562-4.CrossRefADSGoogle Scholar
  11. 11.
    D. Sungguan, S. Ahuja and D.M. Stefanescu, An analytical model for the interaction between an insoluble particle and an advancing solid/liquid interface, Metall. Trans. A, vol. 23, 1992, p. 669-680.CrossRefGoogle Scholar
  12. 12.
    J. Maity, T.K. Pal and R. Maiti, Microstructural characterization of TLPD bonded 6061-SiCp composite, J. Mater. Eng. Perform., vol. 17, No. 5, 2008, p. 746-754.CrossRefGoogle Scholar
  13. 13.
    D.R. Ulmann, B. Chalmers, K.A. Jackson, Interaction between particles and solid-liquid interface, J. Appl. Phys., vol. 35, no. 10, 1964, p. 2986-2993.CrossRefADSGoogle Scholar
  14. 14.
    J. Cisse and G.F. Bolling, A study of the trapping and rejection of insoluble particles during the freezing of water, Journal of Crystal Growth, vol. 10, 1971, p. 67-76.CrossRefADSGoogle Scholar
  15. 15.
    J. Cisse and G.F. Bolling, The steady state rejection of insoluble particles by salol grown from the melt, Journal of Crystal Growth, vol. 11, 1971, p. 25-28.CrossRefADSGoogle Scholar
  16. 16.
    G.F Bolling and J. Cisse, A theory for the interaction of particles with solidifying front, Journal of Crystal Growth, vol.10, 1971, p. 55-66.CrossRefGoogle Scholar
  17. 17.
    A.A. Chernov, D.E. Temkin, A.M. Melnikova, Theory of the capture of solid inclusions during the growth of crystals from the melt, Soviet Physics Crystallography, vol. 21, No. 4, 1976, p. 369-373.Google Scholar
  18. 18.
    D.M. Stefanescu, B.K. Dhindaw, S.A. Kacar, A. Moitra, Behaviour of ceramic particles at the solid liquid metal interface in metal matrix composites, Metall. Trans. A, vol. 19, 1988, p. 2847-2855.CrossRefGoogle Scholar
  19. 19.
    D.M. Stefanescu and B.K. Dhindaw, Behaviour of Insoluble Particles at the Solid/Liquid Interface, ASM Metals Handbook, Vol. 15 Casting, ASM International, 1988, p 315–326, ISBN 0-87170-021-2Google Scholar
  20. 20.
    A. Contreras, C. Angeles-Chávez, O. Flores, R. Perez, Structural, morphological and interfacial characterization of Al–Mg/TiC composites, Mater. Character., 58, 2007, p. 685–693.CrossRefGoogle Scholar
  21. 21.
    A. Albiter, C.A. Leon, R.A.L. Drew, E. Bedolla, Microstructure and heat-treatment response of Al-2024/TiC composites, Mater. Sci. Eng. A289, 2000, p. 109–115.Google Scholar
  22. 22.
    C. Selcuk, A.R. Kennedy, Al–TiC composite made by the addition of master alloys pellets synthesized from reacted elemental powders, Mater. Lett., 60, 2006, p. 3364–3366.CrossRefGoogle Scholar
  23. 23.
    R.F. Shyu and C.T. Ho, In situ reacted titanium carbide-reinforced aluminium alloys composite, J. Mater. Process. Technol., 171, 2006, p. 411–416.CrossRefGoogle Scholar
  24. 24.
    M.K. Premkumar, M.G. Chu, Al-TiC particulate composite produced by a liquid state in situ process, Mater. Sci. Eng. A202, 1995, p. 172-178.Google Scholar
  25. 25.
    S. Khatri and M. Koczak, Formation of TiC in insitu processed composites via solid – gas and liquid – gas reactions in molten Al-Ti, Mater. Sci. Eng., A162, 1993, p. 153-162.Google Scholar
  26. 26.
    P. Sahoo and M. Koczak, Analysis of in situ formation of titanium carbide in aluminium alloys, Mater. Sci. Eng., A144, 1991, p. 37-44.Google Scholar
  27. 27.
    N. Eustathopoulos, M.G. Nicolas, and B. Drevet, Wettability at High Temperatures, Pergamon Materials Series, R.W. Chan, Ed., 1999, p 300, ISBN: 0-08-042146-6Google Scholar
  28. 28.
    J.V. Naidich, The wettability of solids by liquid metals, Progress in Surface and Membrane science, vol. 14, 1981, p. 353-484.Google Scholar
  29. 29.
    D. Ovono, I. Guillot, D. Massinon, The microstructure and precipitation kinetics of a cast aluminium alloy, Scripta Mater., 55, 2006, p. 259–262.CrossRefGoogle Scholar
  30. 30.
    R. Mahmudi, P. Sepehrband, H.M. Ghasemi, Improved properties of A319 aluminium casting alloy modified with Zr, Mater. Lett., 60, 2006, p. 2606–2610.CrossRefGoogle Scholar
  31. 31.
    S. K. Rhee, Wetting of ceramics by liquid aluminium, J. Amer. Ceram. Soc., vol. 53, no. 7, 1970, p. 386-389.CrossRefGoogle Scholar
  32. 32.
    V.H. Lopez, A. Scoles, A.R. Kennedy, The thermal stability of TiC particles in an Al 7 wt % Si alloy, Mater. Sci. Eng., A356, 2003, p. 316-325.Google Scholar
  33. 33.
    ASM Metals Handbook, Composites, Vol. 21, ASM International, 2004, p 132, ISBN 0-87170-703-9Google Scholar
  34. 34.
    ASM Metals Handbook, Properties and Selection: Non-Ferrous Alloys and Special Purpose Materials, Vol. 2, ASM International, 1990, p 2924, ISBN 0-87170-378-5Google Scholar
  35. 35.
    L. Backerud, G. Chai, J. Tamminen, Solidification Characteristics of Aluminum Alloys, vol. 2: Foundry Alloys, AFS/Skanaluminium, Des Plaines, IL, 1990, p. 127–134.Google Scholar
  36. 36.
    F.H Samuel, A.M. Samuel, H.W. Doty, Factors controlling the type and morphology of Cu-containing phases in 319 Al alloy, AFS Trans., 104, 1996, p. 893-903.Google Scholar
  37. 37.
    M. H. Mulazimoglu, N. Tenekedjiev, B.M. Closset, J.E. Gruzleski, Studies on the minor reactions and phases in strondium treated Aluminium – Silicon casting alloys, Cast Metals, 6, 1993, p 16-28.Google Scholar

Copyright information

© ASM International 2009

Authors and Affiliations

  • A. E. Karantzalis
    • 1
  • A. Lekatou
    • 1
  • E. Georgatis
    • 1
  • V. Poulas
    • 1
  • H. Mavros
    • 1
  1. 1.Department of Materials Science and EngineeringUniversity of IoanninaIoanninaGreece

Personalised recommendations