Advertisement

Influence of Surface Roughness on Corrosion and Tribological Behavior of CP-Ti After Thermal Oxidation Treatment

  • E. ArslanEmail author
  • Y. Totik
  • E. Demirci
  • A. Alsaran
Article

Abstract

In this study, tribological and corrosion behavior of commercially pure titanium (CP-Ti) with different surface roughness values after thermal oxidation was investigated. The CP-Ti specimens were prepared with three different roughness values from silicon carbide paper, Ra = 0.1, 0.3, and 0.6 μm, and the thermal oxidization process was conducted at a temperature of 850 °C for 8 h in an O2 atmosphere. Structural, mechanical, corrosion, and tribological properties of untreated and thermally oxidized CP-Ti with different surface roughness values were investigated through x-ray diffraction, scanning electron microscopy, microhardness, potensiostat, and pin-on-disk techniques. The corrosion and tribological behavior of CP-Ti improved as an oxide layer was formed by thermal oxidation. It was observed that the surface roughness had an effect on these characteristics. It was established that the decreased roughness improves the tribological and corrosion properties.

Keywords

corrosion surface roughness thermal oxidation wear 

Notes

Acknowledgments

This research has been supported by TUBITAK (The Scientific and Technical Research Council of Turkey) project with Grant No. 107M313. The authors would like to thank the TUBITAK for funding the project.

References

  1. 1.
    D. Eylon, S.R. Seagle, Advances in Titanium Technology—An Overview, Keikinzoku/J. Jpn. Inst. Light Metals, 2000, 50 (8), 359-370.Google Scholar
  2. 2.
    W. Lee Williams: Proceedings of the International Conference on titanium: The Science, Technology and Application of Titanium, Pergamon Press, London, 1970.Google Scholar
  3. 3.
    J.R. Sobiecki, T. Wierzchon, J. Rudnicki, The Influence of Glow Discharge Nitriding, Oxynitriding and Carbonitriding on Surface Modification of Ti-1Al-1Mn Titanium Alloy Vacuum, 2001, 64, 41-46.CrossRefGoogle Scholar
  4. 4.
    F. Galliano, E. Galvanetto, S. Mischler, D. Landolt, Tribocorrosion Behavior of Plasma Nitrided Ti-6Al-4 V Alloy in Neutral NaCl Solution, Surf. Coat.Technol., 2001, 145, 121-131.CrossRefGoogle Scholar
  5. 5.
    H. Shibata, K. Tokaji, T. Ogava, C. Hori, The Effect of Gas Nitriding on Fatigue Behaviour in Titanium Alloys, Int. J. Fatigue, 1994, 16, 370-376.CrossRefGoogle Scholar
  6. 6.
    A. Grill and P.R. Aron, RF-Sputtered Silicon and Hafnium Nitride—Properties and Adhesion to 440C Stainless Steel, NASA Technical Paper, 1983.Google Scholar
  7. 7.
    S. Malinov, Z. Guo, W. Sha, A. Wilson, Differential Scanning Calorimetry Study and Computer Modeling of β ⇒ α Phase Transformation in A Ti-6Al-4 V Alloy, Metall. Mater. Trans., 2001, A 32, 879-887.CrossRefGoogle Scholar
  8. 8.
    K.T. Rie, T. Stucky, R.A. Silva, E. Leitao, Plasma Surface Treatment and PACVD on Ti Alloys for Surgical Implants, Surf. Coat. Technol. 74-75, 1995, 973-980.CrossRefGoogle Scholar
  9. 9.
    T. Bell, J. Lanagan, P.H. Morton, H.W. Bergmann, A.M. Staines, Surface Engineering of Titanium with Nitrogen, Surf. Eng., 1986, 2, 133-143.Google Scholar
  10. 10.
    S.K. Wu, H.C. Lin, C.Y. Lee, Gas Nitriding of an Equiatomic TiNi Shape Memory Alloy: II. Hardness, Wear and Shape Memory Ability, Surf. Coat. Technol., 1999,113 (1-2), 13-16.CrossRefGoogle Scholar
  11. 11.
    K.G. Budinski, Tribological Properties of Titanium Alloys, Wear, 1991, 151, 203-217.CrossRefGoogle Scholar
  12. 12.
    P. D. Miller, J. W. Holladay, Friction and Wear Properties of Titanium, Wear, 1958, 2, 133-140.CrossRefGoogle Scholar
  13. 13.
    M. Khaled, B.S. Yilbas and J. Shirokoff, Electrochemical Study of Laser Nitrided and PVD TiN Coated Ti-6Al-4 V Alloy: The Observation of Selective Dissolution, Surf. Coat. Technol., 2001, 148, 46-54.CrossRefGoogle Scholar
  14. 14.
    A.S. Korhonen and E. Harju, Surface Engineering with Light Alloys-Hard Coatings, Thin Films, and Plasma Nitriding, J. Mater. Eng. Perform., 2000, 9, 302-305.CrossRefGoogle Scholar
  15. 15.
    B.Y. Chou and E. Chang, Plasma-Sprayed Hydroxyapatite Coating on Titanium Alloy with ZrO2 Second Phase and ZrO2 Intermediate Layer, Surf. Coat. Technol., 2002, 153, 84-92.CrossRefGoogle Scholar
  16. 16.
    S.M. Johns, T. Bell, M. Samandi and G.A. Collins, Wear Resistance of Plasma Immersion Ion Implanted Ti6A14 V, Surf. Coat. Technol., 1996, 85, 7-14.CrossRefGoogle Scholar
  17. 17.
    A. Bloyce, P. Y. Qi, H. Dong, T. Bell, Surface Modification of Titanium Alloys for Combined Improvements in Corrosion and Wear Resistance, Surf. Coat. Technol., 1998, 107(2-3), 125-132.CrossRefGoogle Scholar
  18. 18.
    C.Q. Yuan, Z. Peng, X.P. Yan and X.C. Zhou, Surface Roughness Evolutions in Sliding Wear Process, Wear, 2008, 265(3-4), 341-348.CrossRefGoogle Scholar
  19. 19.
    B.J. Roylance, Wear Debris and Associated Wear Phenomena-Fundamental Research and Practice, Proc. Inst. Mech. Eng. J: J. Eng. Tribol., 2000, 214, 79–105.CrossRefGoogle Scholar
  20. 20.
    G.Chen, X.Wen and N.Zhang, Corrosion Resistance and Ion Dissolution of Titanium with Different Surface Microroughness, Bio-Med. Mater. Eng., 1998, 8, 61-74.Google Scholar
  21. 21.
    G.Bertrand,K.Jarraya, J.M.Chaix, Morphology of Oxide Scales Formed on Titanium, Oxid. Met., 1983, 21(1-2), 1-19.Google Scholar
  22. 22.
    H.Dong, A.Bloyce, P.H.Morton, T.Bell, Surface Engineering to Improve Tribological Performance of Ti-6Al-4V, Surf. Eng., 1997, 13(5), 402-406.Google Scholar
  23. 23.
    T.Bacci, F.Borgioli, E.Galvanetto, F.Galliano, B.Tesi, Wear Resistance of Ti-6Al-4V Alloy Treated by Means of Glow-Discharge and Furnace Treatments, Wear, 2000, 240,199-206.CrossRefGoogle Scholar
  24. 24.
    Z.X. Zhang, H. Dong, T. Bell, B. Xu, The Effect of Treatment Condition on Boost Diffusion of Thermally Oxidised Titanium Alloy, J. Alloys Compd., 2007, 431, 1-2, 93-99.CrossRefGoogle Scholar
  25. 25.
    F. Habashi, Handbook of Extractive Metallurgy, vol. 2. Wiley-VCH, Weinheim, 1989, pp 1130-1179.Google Scholar
  26. 26.
    P. A. Dearnley, K. L. Dahm, H. Cimenoglu, The Corrosion-Wear Behaviour of Thermally Oxidised Cp-Ti and Ti-6Al-4V, Wear, 2004, 256 (5), 469-479.CrossRefGoogle Scholar
  27. 27.
    H. Dong, T. Bell, Enhanced Wear Resistance of Titanium Surfaces by a New Thermal Oxidation Treatment, Wear, 2000, 238 (2), 131-137.CrossRefGoogle Scholar
  28. 28.
    H. Dong, X. Y. Li, Oxygen Boost Diffusion for the Deep-Case Hardening of Titanium Alloys, Mater. Sci. Eng. A, 2000, 280 (2), 303-310.CrossRefGoogle Scholar
  29. 29.
    W.Yan, X.X.Wang, Surface Hardening of Titanium by Thermal Oxidation, J. Mater. Sci., 2004, 39, 5583-5585.CrossRefADSGoogle Scholar
  30. 30.
    D.Siva Rama Krishna, Y.L.Brama, Y.Sun, Thick Rutile Layer on Titanium for Tribological Applications, Tribol. Int., 2007, 40(2), 329-334.CrossRefGoogle Scholar
  31. 31.
    D.Maugis, G.Desalos-Andarell, A.Heurtal, R.Courtal, Adhesion and Friction on Al Thin Foils Related to Observed Dislocation Density, ASLE Trans., 21 (1978) 1-19.Google Scholar
  32. 32.
    M.N. Gardos, H.S.Hong,W.O.Winer, Effect of Anion Vacancies on The Tribological Properties of Rutile (TiO2-x). Part II. Experimental Evidence, Tribol. Trans. 1990, 22, 209-222.CrossRefGoogle Scholar
  33. 33.
    P.J. Blau, C.B. Jolly, J. Qu, W.H. Peter, C.A. Blue, Tribological Investigation of Titanium-Based Materials for Brakes, Wear, 2007, 263(7-12), 1202-1211.CrossRefGoogle Scholar
  34. 34.
    R.S. Magaziner, V.K. Jain, S. Mall, Wear Characterization of Ti-6Al-4V Under Fretting-Reciprocating Sliding Conditions, Wear, 2008, 264 (11-12), 1002-1014.CrossRefGoogle Scholar
  35. 35.
    T. Hong, M. Nagumo, Effect of Surface Roughness on Early Stages of Pitting Corrosion of Type 301 Stainless Steel, Corros. Sci., 1997, 39, 1665-1672.CrossRefGoogle Scholar
  36. 36.
    R. Narayanan, S.K. Seshadri, Point Defect Model and Corrosion of Anodic Oxide Coatings on Ti-6Al-4V, Corros. Sci., 2008, 50, 1521-1529.CrossRefGoogle Scholar

Copyright information

© ASM International 2009

Authors and Affiliations

  1. 1.Surface Technologies and Biomechanics Research Laboratory, Engineering Faculty, Department of Mechanical EngineeringAtaturk UniversityErzurumTurkey

Personalised recommendations