Journal of Materials Engineering and Performance

, Volume 16, Issue 4, pp 494–499

Use of Electrochemical Noise (EN) Technique to Study the Effect of sulfate and Chloride Ions on Passivation and Pitting Corrosion Behavior of 316 Stainless Steel

  • M.G. Pujar
  • T. Anita
  • H. Shaikh
  • R.K. Dayal
  • H.S. Khatak
Article

In the present paper, studies were conducted on AISI Type 316 stainless steel (SS) in deaerated solutions of sodium sulfate as well as sodium chloride to establish the effect of sulfate and chloride ions on the electrochemical corrosion behavior of the material. The experiments were conducted in deaerated solutions of 0.5 M sodium sulfate as well as 0.5 M sodium chloride using electrochemical noise (EN) technique at open circuit potential (OCP) to collect the correlated current and potential signals. Visual records of the current and potential, analysis of data to arrive at the statistical parameters, spectral density estimation using the maximum entropy method (MEM) showed that sulfate ions were incorporated in the passive film to strengthen the same. However, the adsorption of chloride ions resulted in pitting corrosion thereby adversely affecting noise resistance (RN). Distinct current and potential signals were observed for metastable pitting, stable pitting and passive film build-up. Distinct changes in the values of the statistical parameters like RN and the spectral noise resistance at zero frequency (R°SN) revealed adsorption and incorporation of sulfate and chloride ions on the passive film/solution interface.

Keywords

316SS adsorption chloride electrochemical noise passive film sulfate 

References

  1. 1.
    Pistorius P.C., Burstein G.T. 1992 Growth of Corrosion Pits on Stainless Steel in Chloride Solution Containing Dilute Sulphate. Corros. Sci. 33(12): 1885–1897CrossRefGoogle Scholar
  2. 2.
    Abd El Meguid E.A., Mahmoud N.A., Abd El Rehim S.S. 2000 The Effect of Some Sulphur Compounds on the Pitting Corrosion of Type 304 Stainless Steel. Mater. Chem. Phys. 63(1): 67–74CrossRefGoogle Scholar
  3. 3.
    Ernst P., Newman R.C. 2002 Pit Growth Studies in Stainless Steel Foils. II. Effect of Temperature, Chloride Concentration and Sulphate Addition. Corros. Sci. 44(5):943–954CrossRefGoogle Scholar
  4. 4.
    Ernst P., Laycock J.J., Moayed M.H., Newman R.C. 1997 The mechanism of lacy cover formation in pitting. Corros. Sci. 39(6): 1133–1136CrossRefGoogle Scholar
  5. 5.
    Moayed M.H., Newman R.C. 1998 Aggressive Effects of Pitting “Inhibitors” On Highly Alloyed Stainless Steels. Corros. Sci. 40(2–3): 519–522CrossRefGoogle Scholar
  6. 6.
    Ameer M.A., Fekry A.M, El-Taib Heakal F. 2004 Electrochemical Behaviour of Passive Films On Molybdenum-Containing Austenitic Stainless Steels in Aqueous Solutions. Electrochim. Acta 50(1): 43–49CrossRefGoogle Scholar
  7. 7.
    Roberge R. 1993 Analysis of Spontaneous Electrochemical Noise for Corrosion Studies J. Appl. Electrochem. 23(12): 1223–1231CrossRefGoogle Scholar
  8. 8.
    Bertocci U. 1981 Separation between Deterministic Response and Random Fluctuations by Means of the Cross-Power Spectrum in the Study of Electrochemical Noise. J. Electrochem. Soc. 128: 520–523CrossRefGoogle Scholar
  9. 9.
    Legat A., Dolecek V. 1995 Corrosion Monitoring System Based On Measurement and Analysis of Electrochemical Noise. Corrosion 51(4): 295–300CrossRefGoogle Scholar
  10. 10.
    Hladky K., Dawson J.L. 1981 The Measurement of Localized Corrosion using Electrochemical Noise. Corros. Sci. 21(4): 317–322CrossRefGoogle Scholar
  11. 11.
    Hladky K., Dawson J.L. 1982 The Measurement of Corrosion Using Electrochemical 1/f Noise. Corros. Sci. 22(3): 231–237CrossRefGoogle Scholar
  12. 12.
    Simoes A.M.P., Ferreira M.G.S. 1987 Crevice Corrosion Studies on Stainless Steel Using Electrochemical Noise Measurements. Br. Corros. J. 22(1): 21–25Google Scholar
  13. 13.
    Flis J., Dawson J.L., Gill J., Wood G.C. 1991 Impedance and Electrochemical Noise Measurements on Iron and Iron-Carbon Alloys in Hot Caustic Soda. Corros. Sci. 32(8): 877–892CrossRefGoogle Scholar
  14. 14.
    Monticelli C., Brunoro G., Firgnani A., Trabanelli G. 1992. Evaluation of Corrosion Inhibitors by Electrochemical Noise Analysis. J. Electrochem. Soc. 139(3): 706–711CrossRefGoogle Scholar
  15. 15.
    G. Gusmano, G. Montesperelli, and E. Traversa, CORROSION/93, paper no. 355, National Association of Corrosion Engineers, Houston, Texas, 1993Google Scholar
  16. 16.
    Cottis R.A. 2001. Interpretation of Electrochemical Noise Data. Corrosion 57(3): 265–285Google Scholar
  17. 17.
    Bertocci U., Frydman J., Gabrieelli C., Huet F., Keddam M. 1998 Analhysis of Electrochemical Noise by Power Spectral Density Applied to Corrosion Studies. J. Electrochem. Soc. 145(8): 2780–2786CrossRefGoogle Scholar
  18. 18.
    Isaacs H.S. 1989. The Localized Breakdown and Repair of Passive Surfaces During Pitting. Corros. Sci. 29(2–3): 313–323CrossRefGoogle Scholar
  19. 19.
    Laycock N.J., Newman R.C. 1997 Localised Dissolution Kinetics, Salt Films and Pitting Potentials. Corros. Sci. 39(10–11): 1771–1790CrossRefGoogle Scholar
  20. 20.
    Lee C.C., Mansfeld F. 1998 Analysis of Electrochemical Noise Data for a Passive System in the Frequency Domain. Corros. Sci. 40(6): 959–962CrossRefGoogle Scholar
  21. 21.
    Mansfeld F., Lee C.C., Zhang G. 1998 Comparison of Electrochemical Impedance and Noise Data in the Frequency Domain. Electrochem. Acta 43(3–4): 435–438CrossRefGoogle Scholar
  22. 22.
    Hoar T.P., Jacob W.R. 1967 Breakdown of Passivity of Stainless Steel by Halide Ions. Nature 216: 1299–1301CrossRefGoogle Scholar
  23. 23.
    Dawson J.L., Ferreira M.G.S. 1986 Crevice Corrosion on 316 Stainless Steel in 3% Sodium Chloride Solution. Corros. Sci. 26(12): 1027–1040CrossRefGoogle Scholar
  24. 24.
    Chen J.F., Bogaerts W.F. 1995 The Physical Meaning of Noise Resistance. Corros. Sci. 37(11): 1839–1842CrossRefGoogle Scholar
  25. 25.
    Yong-Jun Tan, ‘Interpreting electrochemical noise resistance as a statistical linear polarization resistance’, The Journal of Corrosion Science and Engineering (WWW),The Journal of Corrosion Science and Engineering, Vol 1 paper 11, 1999, published as pre-print form, 8 pGoogle Scholar
  26. 26.
    Aballe A., Bautista A., Bertocci U., Huet F. 2001 Measurement of the Noise Resistance for Corrosion Applications. Corrosion 57(1): 35–42Google Scholar
  27. 27.
    Mansfeld F., Xiao H. 1993 Electrochemical Noise Analysis of Iron Exposed to NaCl Solutions of Different Corrosivity. J. Electrochem. Soc. 140(8): 2205–2209CrossRefGoogle Scholar
  28. 28.
    Tan Y.J., Bailey S., Kinsella B. 1996 The Monitoring of the Formation and Destruction of Corrosion Inhibitor Films Using Electrochemical Noise Analysis. Corros. Sci. 38: 1681–1695CrossRefGoogle Scholar
  29. 29.
    Asawa M. 1970 Stress-Corrosion Cracking of 18-8 Austenitic Stainless Steel in Sulphuric Acid Containing Sodium Chloride. J. Jpn. Inst. Metals. 34(8): 871–877Google Scholar
  30. 30.
    Rogers G.T., Draper P.H.G., Wood S.S. 1968 Anion Impurities in Anodic Oxide Films On Zirconium. Electrochim. Acta 13(2): 251–261CrossRefGoogle Scholar
  31. 31.
    Gusmano G., Montesperelli G., Pacetti S., Petitti A., D’Amico A. 1997 Electrochemical Noise Resistance as a Tool for Corrosion Rate Prediction. Corros. 53(11): 860–868Google Scholar
  32. 32.
    G. Gusmano, G. Montesperelli, A. D’Amico, and C. Di Natale, Use of Noise Measurements for the Investigation of Corrosion Phenomena. Corrosion Asia, Singapore, Sept. 26–30, (Houston, TX: NACE), 1994Google Scholar

Copyright information

© ASM International 2007

Authors and Affiliations

  • M.G. Pujar
    • 1
  • T. Anita
    • 1
  • H. Shaikh
    • 1
  • R.K. Dayal
    • 1
  • H.S. Khatak
    • 1
  1. 1.Corrosion Science and Technology DivisionIndira Gandhi Centre for Atomic ResearchKalpakkamIndia

Personalised recommendations