Advertisement

Journal of Electronic Materials

, Volume 28, Issue 2, pp 124–133 | Cite as

Impurity incorporation and the surface morphology of MOVPE grown GaAs

  • Jiang Li
  • T. F. Kuech
Regular Issue Paper

Abstract

The impact of impurity incorporation on the development of the surface morphology of GaAs epilayers, grown by metalorganic vapor phase epitaxy (MOVPE), has been systematically investigated. A variety of different doping elements, including Mg, Zn, C, Si, O, and Se, were used to study the interaction between the impurity atoms and GaAs surface. Impurity atoms with smaller atomic weight, belonging to group II and VI, have a larger influence on the surface morphology than the other dopants. Different chemical sources for carbon doping were also used to explore the effect of surface growth chemistry on the formation of surface features. The epilayer surface morphology was affected by the combination of several physical and chemical factors. Factorsinfluencing the impact of an impurity on the growth front evolution are presented based on the interaction between the impurity atoms and the surface step structures.

Key words

GaAs impurities morphology semiconductors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G.B. Stringfellow, Organometallic Vapor Phase Epitaxy, (Orlando, FL: Academic Press, 1990).Google Scholar
  2. 2.
    T.F. Kuech, Mater. Sci. Rep. 2, 1 (1987).CrossRefGoogle Scholar
  3. 3.
    A. Bhattacharya, L.J. Mawst, S. Nayak, J. Li and T.F. Kuech, Appl. Phys. Lett. 68, 2240 (1996).CrossRefGoogle Scholar
  4. 4.
    J. M. Redwing, S. Nayak, D.E. Savage, M.G. Lagally, D.F. Dawson-Elli and T.F. Kuech, J. Cryst. Growth 145, 792 (1994).CrossRefGoogle Scholar
  5. 5.
    C. Ratsch and A. Zangwill, Appl. Phys. Lett. 63, 2348 (1993).CrossRefGoogle Scholar
  6. 6.
    C. Ratsch and A. Zangwill, Appl. Phys. Lett. 58, 403 (1991).CrossRefGoogle Scholar
  7. 7.
    D.D. Vvedensky and S. Clarke, Surf. Sci. 225, 373 (1990).CrossRefGoogle Scholar
  8. 8.
    J.E. Epler, J. Sochtig and H.C. Sigg, Appl. Phys. Lett. 65, 1949 (1994).CrossRefGoogle Scholar
  9. 9.
    M. Kondo, C. Anayama, N. Okada, H. Sekiguchi, K. Domen and T. Tanahashi, J. Appl. Phys. 76, 914 (1994).CrossRefGoogle Scholar
  10. 10.
    R. Bhat, C. Caneau, C.E. Zah, M.A. Koza, M.A. Bonner, D.M. Hwang, S.A. Schwarz, S.G. Menocal and F.G. Favire, J. Cryst. Growth 107, 772 (1991).CrossRefGoogle Scholar
  11. 11.
    J. Li and T.F. Kuech, J. Cryst. Growth 170, 292 (1997).CrossRefGoogle Scholar
  12. 12.
    J. Li and T.F. Kuech, J. Cryst. Growth 181, 171 (1997).CrossRefGoogle Scholar
  13. 13.
    T.F. Kuech, S. Nayak, J.W. Huang and J. Li, J. Cryst. Growth 163, 171 (1996).CrossRefGoogle Scholar
  14. 14.
    P.D. Kiechner, J.M. Woodall, J.L. Freeouf, D.J. Wolford and G.D. Pettit, J. Vac. Sci. Technol. 19, 604 (1981).CrossRefGoogle Scholar
  15. 15.
    P.J. Wang, T.F. Kuech, M.A. Tischler, P. Mooney, G. Scilla and F. Cardone, J. Appl. Phys. 64, 4975 (1988).CrossRefGoogle Scholar
  16. 16.
    M. Shimazu, K. Kamon, K. Kimura, M. Mashita, M. Mihara and M. Ishii, J. Cryst. Growth 83, 327 (1987).CrossRefGoogle Scholar
  17. 17.
    S. Nayak, J.M. Redwing, J.W. Huang, M.G. Lagally and T.F. Kuech, Mater. Res. Soc. Symp. Proc. Vol. 367 (Pittsburgh, PA: Mater. Res. Soc., 1995), p. 293.Google Scholar
  18. 18.
    T.B. Massalski, H. Okamoto, P.R. Subramanian and L. Kacprzak, Binary Alloy Phase Diagrams, 2nd Ed., (Materials Park, OH: ASM International, 1992).Google Scholar
  19. 19.
    R.T. Sanderson, Polar Covalence, (New York: Academic Press, 1983).Google Scholar
  20. 20.
    V. Schomaker and D.P. Stephenson, J. Am. Chem. Soc. 63, 37 (1941).CrossRefGoogle Scholar
  21. 21.
    M. Kasu and N. Kobayashi, J. Appl. Phys. 78, 3026 (1995).CrossRefGoogle Scholar
  22. 22.
    K. Hata, A. Kawazu, T. Okano, T. Ueda and M. Akiyama, Appl. Phys. Lett. 63, 1625 (1993).CrossRefGoogle Scholar
  23. 23.
    A. Ponchet, A.L. Corre, A. Godefroy, S. Salaun and A. Poudoulec, J. Cryst. Growth 153, 71 (1995).CrossRefGoogle Scholar
  24. 24.
    J. Tersoff, Appl. Surf. Sci. 102, 1 (1996).CrossRefGoogle Scholar
  25. 25.
    R.L. Schwoebel and E.J. Shipsey, J. Appl. Phys. 37, 3682 (1966).CrossRefGoogle Scholar
  26. 26.
    D. Kandel and J.D. Weeks, Phys. Rev. B 49, 5554 (1994).CrossRefGoogle Scholar
  27. 27.
    S. Harris, J. Cryst. Growth 135, 354 (1994).CrossRefGoogle Scholar
  28. 28.
    A.P. Payne, P.H. Fuoss, D.W. Kisker, G.B. Stephenson and S. Brennan, Phys. Rev. B 49, 14427 (1994).CrossRefGoogle Scholar
  29. 29.
    F. Reinhardt, W. Richter, A.B. Muller, D. Gutsche, P. Kurpas, K. Ploska, K.C. Rose and M. Zorn, J. Vac. Sci. Technol. B 11, 1427 (1993).CrossRefGoogle Scholar
  30. 30.
    H. Asai, J. Cryst. Growth 80, 425 (1987).CrossRefGoogle Scholar
  31. 31.
    T. Shitara, D.D. Vvedensky, M.R. Wilby, J. Zhang, J.H. Neave and B.A. Joyce, Phys. Rev. B 46, 6825 (1992).CrossRefGoogle Scholar
  32. 32.
    Y. Horikoshi, H. Yamaguchi, F. Briones and M. Kawashima, J. Cryst. Growth 105, 326 (1990).CrossRefGoogle Scholar
  33. 33.
    M.D. Pashley, K.W. Haberern and J.M. Gaines, Surf. Sci. 267, 153 (1992).CrossRefGoogle Scholar
  34. 34.
    J. Ishizaki, Y. Ishikawa, K. Ohkuri, M. Kawase and T. Fukui, Appl. Surf. Sci. 113/114, 343 (1997).CrossRefGoogle Scholar
  35. 35.
    K. Kanisawa, H. Yamaguchi and Y. Horikoshi, J. Cryst. Growth 175/176, 304 (1997).CrossRefGoogle Scholar
  36. 36.
    H.C. Alt, Appl. Phys. Lett. 55, 2736 (1989).CrossRefGoogle Scholar
  37. 37.
    X. Zhong, D. Jiang, W. Ge and C. Song, Appl. Phys. Lett. 52, 628 (1988).CrossRefGoogle Scholar

Copyright information

© TMS-The Minerals, Metals and Materials Society 1999

Authors and Affiliations

  • Jiang Li
    • 1
  • T. F. Kuech
    • 1
  1. 1.Department of Chemical EngineeringUniversity of WisconsinMadison

Personalised recommendations