Journal of Electronic Materials

, Volume 28, Issue 9, pp 1045–1054 | Cite as

Partially-constrained thermomechanical fatigue of eutectic tin-bismuth/copper solder joints

  • C. H. Raeder
  • R. W. MesslerJr.
  • L. F. CoffinJr.
Special Issue Paper

Abstract

Small bimetallic load-frames with reference assembly stiffness, k′, and fully-constrained shear strain, γfc, were used to simulate the thermo-mechanical conditions experienced by eutectic Bi-42wt.%Sn-to-Cu solder joints. Shear stress and strain were induced in the solder joint by a 45-minute, 0 to 100°C temperature cycle and were calculated from the assembly temperature, joint configuration, and measured elastic strain in the load-frame. Early in cycling, a hysteresis loop representing the maximum stress range and minimum strain range was reached. As damage accumulated in the solder, the stress range decreased and the strain range increased. The TMF life of the joints, defined by the load range drop, Φ, as a function of k′ and γfc, can be determined, defining an effective plastic strain range which allows data for various stiffnesses and thermal expansion mismatches to be summarized on a single Coffin-Mansion plot. The effective plastic strain range also provides an important link to conventional low cycle fatigue (LCF) data taken from an infinitely stiff load-frame.

Key words

Solder (joints) tin-bismuth eutectic thermomechanical fatigue life prediction partially-compliant joints 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Majors, Jr., Trans. ASM 51, 421 (1959).Google Scholar
  2. 2.
    R.W. New and H. Sehitoglu, Met. Trans. 20A, 1755 (1989).Google Scholar
  3. 3.
    G.R. Halford, M.A. McGraw, R.C. Bill, and P.D. Fanti, Fatigue at Elevated Temperatures, ASTM STP 520, ed. A.E. Carden, A.J. McEvily, and C.H. Wells (Philadelphia, PA: ASTM, 1973), p. 625.Google Scholar
  4. 4.
    L.R. Fox, J.W. Sofia, and M.C. Shine, I.E.E.E. Trans. of Components, Hybrids, Manufacturing and Technol. 8, 275 (1985).CrossRefGoogle Scholar
  5. 5.
    S. Taira, Fatigue at Elevated Temperatures, ASTM STP 520, ed. A.E. Carden, A.J. McEvily, and C.H. Wells (Philadelphia, PA: ASTM, 1973), p. 80.Google Scholar
  6. 6.
    M.A. McGraw, Thermomechanical Fatigue Behavior of Materials, ASTM STP 1186, ed. H. Sehitoglu (Philadelphia, PA: ASTM, 1993), p 144.Google Scholar
  7. 7.
    M. Francois and L. Remy, Fatigue and Fracture of Engineering Mater. and Structures 14, 115 (1991).CrossRefGoogle Scholar
  8. 8.
    G. Degallaix, G. Korn, and G. Pluvinage, Fatigue and Fracture of Engineering Mater. and Structures 13, 473 (1990).CrossRefGoogle Scholar
  9. 9.
    C.E. Jaske, Thermal Fatigue of Materials and Components, ASTM STP 612, ed. D.A. Spera and D.F. Mowbray (Philadelphia, PA: ASTM, 1975), p. 170.Google Scholar
  10. 10.
    C.A. Rau, Jr., A.F. Gemmo, and G.R. Leverant, Fatigue at Elevated Temperatures, ASTM STP 520, ed. A.E. Carden, A.J. McEvily, and C.H. Wells (Philadelphia, PA: ASTM, 1973), p. 166.Google Scholar
  11. 11.
    K.D. Sheffler and G.S. Double, Fatigue at Elevated Temperatures, ASTM STP 520, ed. A.E. Carden, A.J. McEvily, and C.H. Wells (Philadelphia, PA: ASTM, 1973), p. 491.Google Scholar
  12. 12.
    N. Marchant, G. L’Esperance, and R.M. Pelloux, Fatigue at Elevated Temperatures, ASTM STP 520, ed. A.E. Carden, A.J. McEvily, and C.H. Wells (Philadelphia, PA: ASTM, 1973), p. 638.Google Scholar
  13. 13.
    E. Vasseur and L. Remy, Low-Cycle Fatigue and Elasto-Plastic Behavior of Materials-3, ed. K.-T. Rie (London: Elsevier Applied Science, 1992), p. 186.Google Scholar
  14. 14.
    P.M. Hall, I.E.E.E. Trans. of Components, Hybrids, and Manufacturing Technol. 7, 314 (1984).CrossRefGoogle Scholar
  15. 15.
    P.M. Hall, I.E.E.E. Trans. of Components, Hybrids, and Manufacturing Technol. 12, 556 (1987).CrossRefGoogle Scholar
  16. 16.
    C.H. Raeder (Ph.D. thesis, Rensselaer Polytechnic Institute, 1996).Google Scholar
  17. 17.
    P.E. Hacke, A.F. Sprecher, and H. Conrad, J. Electron. Packaging 115, 153 (1993).Google Scholar
  18. 18.
    P.L. Hacke, A.F. Sprecher, and H. Conrad, Thermomechanical Fatigue Behavior of Materials, ASTM STP 1186, ed. H. Sehitoglu (Philadelphia, PA: ASTM, 1993), p. 91.Google Scholar
  19. 19.
    Measurements Group, Tech Note 513, Raleigh, NC (1994).Google Scholar
  20. 20.
    D.R. Frear, I.E.E.E. Trans. On Components, Hybrids, and Manufacturing Technol. 12, 492 (1989).CrossRefGoogle Scholar
  21. 21.
    N. Nir, T.D. Dudderar, C.C. Wong, and A.R. Storm, J. Electron. Packaging 113, 91 (1991).Google Scholar
  22. 22.
    M. Harada and R. Satoh, I.E.E.E. Trans. of Components, Hybrids, and Manufacturing Technol. 13, 736 (1990).CrossRefGoogle Scholar
  23. 23.
    Y. Tsukada, Y. Mashimoto, T. Nishio, and N. Mii, Advances in Electron. packaging, ed. W.T. Chen and H. Abe (New York: ASME Publ., 1992), p. 827.Google Scholar
  24. 24.
    R. Satoh, K. Arakawa, M. Harada, and K. Matsui, I.E.E.E. Trans. On Components, Hybrids, and Manufacturing Technol. 14, 224 (1991).CrossRefGoogle Scholar
  25. 25.
    R.G. Ross and C.-C. Wen, J. Electron. Packaging 116, 69 (1994).Google Scholar
  26. 26.
    H.D. Solomon, Proc. 39th I.E.E.E. Electron. Components Conf. (New York: IEEE, 1989), p. 277.CrossRefGoogle Scholar
  27. 27.
    K.C. Norris and A.H. Landzberg, IBM J. Research and Development 13, 266 (1969).CrossRefGoogle Scholar
  28. 28.
    S. Knecht and LR. Fox, I.E.E.E. Trans. of Components, Hybrids, and Manufacturing Technol. 13, 424 (1990).CrossRefGoogle Scholar
  29. 29.
    R. Carveaux (Ph.D. thesis, North Carolina State Univ., 1990).Google Scholar
  30. 30.
    S. Vaynman and M.E. Fine, Mat. Res. Soc. Symp. Proc. 226, 3 (1991).Google Scholar

Copyright information

© TMS-The Minerals, Metals and Materials Society 1999

Authors and Affiliations

  • C. H. Raeder
    • 1
  • R. W. MesslerJr.
    • 1
  • L. F. CoffinJr.
    • 2
  1. 1.Department of Materials Science and EngineeringRensselaer Polytechnic InstituteTroy
  2. 2.Department of Mechanical Engineering, Aeronautical Engineering, and MechanicsRensselaer Polytechnic InstituteTroy

Personalised recommendations