Advertisement

Journal of Electronic Materials

, Volume 28, Issue 5, pp 437–441 | Cite as

In situ control of strain-induced dot structure by arsenic/phosphorus replacement

  • Kazunari Ozasa
  • Yoshinobu Aoyagi
Special Issue Paper

Abstract

By means of in situ arsenic/phosphorus partial pressure control, the metastabilization of transitional surface structures during the coherent reformation and flattening of InGaAs(P) dots has been achieved. Since coherently grown dots are maintained by strain accumulated between the dots and a sublayer, the in situ replacement of arsenic/phosphorus in the several topmost monolayers changes the surface lattice parameter of the dots, and a drastic change in surface structure (the flattening of the dots or their reformation) is induced. The transitional surfaces being metastabilized were observed ex situ by a high-resolution scanning electron microscope and an atomic force microscope, and the process of dot reformation/flattening was made clear. To show the application of in situ phosphidation (the replacement of arsenic by phosphorus) of dots, the step by step reformation of the dots was demonstrated using an AsH3 pulse supply onto the flattened surface. The fabrication of graded-composition dots was attempted by the pulse supply of TEGa or TMIn during the step by step reformation of dots, resulting in a large difference in the intensity of photoluminescence (PL) between Ga-added and In-added dots. Furthermore, the temperature dependence of PL from the transitional structure between dots and a flat surface has been investigated by means of capping the structure with GaAs overgrowth. The effects of dot phosphidation on PL are discussed through comparison with unphosphidated dots.

Key words

Arsenic/phosphorus replacement InGaAs in situ control photoluminescence (PL) self-organized dots 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Tabuchi, S. Noda and A. Sasaki, Science and Technology of Mesoscopic Structures, ed. S. Namba, C. Hamaguchi and T. Ando (Berlin: Springer, 1992), p. 379.Google Scholar
  2. 2.
    A. Sasaki, J. Cryst. Growth 163, 143 (1996).CrossRefGoogle Scholar
  3. 3.
    J. Ahopelto, A. Yamaguchi, K. Nishi, A. Usui and H. Sakaki, Jpn. J. Appl. Phys. 32, L32 (1993).Google Scholar
  4. 4.
    D. Leonard, M. Krishnamurthy, S. Fafard, J.L. Merz and P.M. Petroff, J. Vac. Sci. Technol. B 12, 1063 (1994).CrossRefGoogle Scholar
  5. 5.
    J.M. Moison, F. Houzay, F. Barthe, L. Leprince, E. Andre and O. Vatel, Appl. Phys. Lett. 64, 196 (1994).CrossRefGoogle Scholar
  6. 6.
    J. Oshinowo, M. Nishioka, S. Ishida and Y. Arakawa, Appl. Phys. Lett. 65, 1421 (1994).CrossRefGoogle Scholar
  7. 7.
    A. Madhukar, Q. Xie, P. Chen and A. Konkar, Appl. Phys. Lett. 64, 2727 (1994).CrossRefGoogle Scholar
  8. 8.
    S. Fafard, R. Leon, D. Leonard, J.L. Merz and P.M. Petroff, Phys. Rev. B 50, 8086 (1994).CrossRefGoogle Scholar
  9. 9.
    J.Y. Marzin, J.-M. Gerard, A. Izrael, D. Barrier and G. Bastard, Phys. Rev. Lett. 73, 716 (1994).CrossRefGoogle Scholar
  10. 10.
    L. Samuelson et al., Jpn. J. Appl. Phys. 34, 4392 (1995).CrossRefGoogle Scholar
  11. 11.
    S. Fafard, S. Raymond, G. Wang, R. Leon, D. Leonard, S. Charbonneau, J.L. Merz, P.M. Petroff and J.E. Bowers, Surf. Sci. 361/362, 778 (1996).CrossRefGoogle Scholar
  12. 12.
    N.N. Ledentsov, Solid State Electron. 40, 785 (1996).CrossRefGoogle Scholar
  13. 13.
    K. Ozasa, Y.J. Park, Y. Aoyagi and L. Samuelson, Appl. Phys. Lett. 71, 797 (1997).CrossRefGoogle Scholar
  14. 14.
    K. Ozasa, T. Ye and Y. Aoyagi, Thin Solid Films 246, 58 (1994).CrossRefGoogle Scholar
  15. 15.
    C.W. Snyder, B.G. Orr, D. Kessler and L.M. Sander, Phys. Rev. Lett. 66, 3032 (1991).CrossRefGoogle Scholar
  16. 16.
    C.W. Snyder, B.G. Orr and H. Munekata, Appl. Phys. Lett. 62, 46 (1993).CrossRefGoogle Scholar
  17. 17.
    M.V. Marquezini, M.J.S.P. Brasil, J.A. Brum, P. Poole, S. Charbonneau and M.C. Tamargo, Phys. Rev. B 53, 16524 (1996).CrossRefGoogle Scholar
  18. 18.
    L. Brusaferri et al., Appl. Phys. Lett. 69, 3354 (1996).CrossRefGoogle Scholar
  19. 19.
    Z.Y. Xu et al., Superlatt. Microstruct. 23, 381 (1997).CrossRefGoogle Scholar

Copyright information

© TMS-The Minerals, Metals and Materials Society 1999

Authors and Affiliations

  • Kazunari Ozasa
    • 1
  • Yoshinobu Aoyagi
    • 1
  1. 1.The Institute of Physical and Chemical Research (RIKEN)SaitamaJapan

Personalised recommendations