Journal of Electronic Materials

, Volume 28, Issue 5, pp 432–436 | Cite as

Formation of nanometer-scale InAs islands on silicon

  • P. C. Sharma
  • K. W. Alt
  • D. Y. Yeh
  • D. Wang
  • K. L. Wang
Special Issue Paper

Abstract

Three dimensional islands of InAs have been grown on Si (100) by using molecular-beam epitaxy to obtain nanometer-scale quantum dots. Morphological examination by atomic force microscopy revealed the formation of islands with narrow size distributions and high densities. For an approximate coverage of 1.2 monolayers of lnAs beyond the growth mode transition, our observations of a rapid evolution of island morphology are explained in terms of strain relaxing mechanisms in the early stages of InAs/Si heteroepitaxy.

Key words

Molecular beam epitaxy (MBE) quantum dots Stranski-Krastanow growth mode 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hao Lee, Roger Lowe-Webb, Weidong Yang and Peter C. Sercel, Appl. Phys. Lett. 72 (7), 812 (1998).CrossRefGoogle Scholar
  2. 2.
    D. Leonard, M. Krishnamurthy, C.M. Reeves, S.P. DenBaars and P.M. Petroff, Appl. Phys. Lett. 63 (23), 3203 (1993).CrossRefGoogle Scholar
  3. 3.
    J.M. Moison, F. Honzay, F. Barthe, L. Leprince, E. Andre and O. Vatel, Appl. Phys. Lett. 64 (2), 196 (1994).CrossRefGoogle Scholar
  4. 4.
    T.I. Kamins, E.C. Carr, R.S. Williams and J.S. Rosner, J. Appl. Phys. 81 (1), 211 (1997).CrossRefGoogle Scholar
  5. 5.
    O.G. Schmidt, C. Lange, K. Eberl, O. Kienzie and F. Ernst, Appl. Phys. Lett. 71 (16), 2340 (1997).CrossRefGoogle Scholar
  6. 6.
    S. Frechengues, V. Drout, B. Lambert, D. Lemoine, S. Loualiche, A. Le Corre and H. L’Haridon, Appl. Phys. Lett. 71 (19), 2818 (1997).CrossRefGoogle Scholar
  7. 7.
    I. Suemene, T. Tawara, T. Saitoh and K. Uesugi, Appl. Phys. Lett. 71 (26), 3886 (1997).CrossRefGoogle Scholar
  8. 8.
    G.E. Cirlin, V.N. Petrov, V.G. Dubrovskii, S.A. Massalov, A.O. Golubok, N.I. Komyak, N.E. Ledentsov, Zh.I. Alferov and D. Bimberg, Tech. Phys. Lett. 24 (4), 290 (1998).CrossRefGoogle Scholar
  9. 9.
    A. Ishisaka and Y. Shiraki, J. Electrochem. Soc. 133, 666 (1986).CrossRefGoogle Scholar
  10. 10.
    D.J. Eaglesham and M. Cerullo, Phys. Rev. Lett. 64 (16), 1943 (1990).CrossRefGoogle Scholar
  11. 11.
    Hao Lee, Roger R. Lowe-Webb, Weidong Yang and Peter C. Sercel, Appl. Phys. Lett. 71 (16), 2325 (1997).CrossRefGoogle Scholar
  12. 12.
    A. Ponchet, A. Le Corre, H. L’Haridon, B. Lambert and S. Salun, Appl. Phys. Lett. 67 (13), (1995).Google Scholar
  13. 13.
    D. Leonard, M. Krishnamurthy, S. Fafard, J.L. Merz and P.M. Petroff, J. Vac. Sci. Technol. B 12 (2) 1063 (1994).CrossRefGoogle Scholar
  14. 14.
    G.D. Lian, J. Yuan, L.M. Brown, G.H. Kim and D.A. Ritche, Appl. Phys. Lett. 73 (1), (1998).Google Scholar

Copyright information

© TMS-The Minerals, Metals and Materials Society 1999

Authors and Affiliations

  • P. C. Sharma
    • 1
  • K. W. Alt
    • 1
  • D. Y. Yeh
    • 1
  • D. Wang
    • 1
  • K. L. Wang
    • 1
  1. 1.Device Research Laboratory, Department of Electrical EngineeringUniversity of CaliforniaLos Angeles

Personalised recommendations