Journal of Electronic Materials

, Volume 28, Issue 6, pp 630–636

Performance limitation of short wavelength infrared InGaAs and HgCdTe photodiodes

  • Antoni Rogalski
  • Robert Ciupa
Special Issue Paper

Abstract

The carrier lifetimes in InxGa1−xAs (InGaAs) and Hg1−xCdxTe (HgCdTe) ternary alloys for radiative and Auger recombination are calculated for temperature 300K in the short wavelength range 1.5<λ<3.7 µm. Due to photon recycling, an order of magnitude enhancements in the radiative lifetimes over those obtained from the standard van Roosbroeck and Shockley expression, has been assumed. The possible Auger recombination mechanisms (CHCC, CHLH, and CHSH processes) in direct-gap semiconductors are investigated. In both n-type ternary alloys, the carrier lifetimes are similar, and competition between radiative and CHCC processes take place. In p-type materials, the carrier lifetimes are also comparable, however the most effective channels of Auger mechanism are: CHSH process in InGaAs, and CHLH process in HgCdTe. Next, the performance of heterostructure p-on-n photovoltaic devices are considered. Theoretically predicted RoA values are compared with experimental data reported by other authors. In0.53Ga0.47As photodiodes have shown the device performance within a factor often of theoretical limit. However, the performance of InGaAs photodiodes decreases rapidly at intermediate wavelengths due to mismatch-induced defects. HgCdTe photodiodes maintain high performance close to the ultimate limit over a wider range of wavelengths. In this context technology of HgCdTe is considerably advanced since the same lattice parameter of this alloy is the same over wide composition range.

Key words

Auger recombination mechanisms HgCdTe InGaAs photodiodes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. H. Olsen, Laser Focus World A21 (March 1991).Google Scholar
  2. 2.
    M.J. Cohen and G.H. Olsen, Laser Focus World 109 (June 1993).Google Scholar
  3. 3.
    G.H. Olsen and M.J. Cohen, Laser Focus World 269 (June 1996).Google Scholar
  4. 4.
    K. Vural, Opt. Eng. 26, 201 (1987).Google Scholar
  5. 5.
    L.J. Kozlowski, K. Vural, D.Q. Bui, R.B. Bailey, D.E. Cooper and D.M. Stephenson, Proc. SPIE 1946, (SPIE, 1993), p. 148.Google Scholar
  6. 6.
    L.J. Kozlowski, K. Vural, S.C. Cabelli, C.Y. Chen, D.E. Cooper, G.L. Bostrup, D.M. Stephenson, W.L. McLevige, R.B. Bailey, K. Hodapp, D. Hall and W.E. Kleinhans, Proc. SPIE 2268, (SPIE, 1994), p. 353.Google Scholar
  7. 7.
    L.O. Bubulac, W.E. Tennant, J.G. Pasko, L.J. Kozlowski, M. Zandian, M.E. Motamedi, R.E. DeWames, J. Bajaj, N. Nayar, W.V. McLevige, N.S. Gluck, R. Melendes, D.E. Cooper, D.D. Edwall, J.M. Arias and R. Hall, J. Electron. Mater. 26, 649 (1997).Google Scholar
  8. 8.
    J. Piotrowski, Infrared Photon Detectors. ed. A. Rogalski, (Bellingham: Optical Engineering Press, 1995), p. 391.Google Scholar
  9. 9.
    J. Piotrowski and W. Gawron, Infrared Phys. Technol. 38, 63 (1997).CrossRefGoogle Scholar
  10. 10.
    J. Piotrowski and A. Rogalski, Sensors and Actuators A67, 146 (1998).Google Scholar
  11. 11.
    R.N. Hall, Proc. IEE B106 (Suppl. 17), 923 (1959).Google Scholar
  12. 12.
    R.G. Humpreys, Infrared Phys. 23, 171 (1983); Infrared Phys. 26, 337 (1986).CrossRefGoogle Scholar
  13. 13.
    W. Van Roosbroeck and W. Shockley, Phys. Rev. 94, 1558 (1954).CrossRefGoogle Scholar
  14. 14.
    C.H. Grein, H. Ehrenreich, and E. Runge, Proc. SPIE 2999, (SPIE, 1998), p. 11.Google Scholar
  15. 15.
    T.N. Casselman and P.E. Petersen, Solid State Commun. 33, 615 (1980).CrossRefGoogle Scholar
  16. 16.
    T.N. Casselman, J. Appl. Phys. 52, 848 (1981).CrossRefGoogle Scholar
  17. 17.
    P.E. Petersen, Semiconductors and Semimetals, Vol. 18, ed. R.K. Willardson and A.C. Beer, (New York: Academic Press, 1981), p. 121.Google Scholar
  18. 18.
    B. Gelmont, Z.N. Sokolova and I.N. Yassievich, Fiz. Tekh. Poluprovodn. 16, 592 (1982).Google Scholar
  19. 19.
    N. Chand, Properties of Lattice-Matched and Strained Indium Gallium Arsenide, ed. P. Bhattachatya, (London: INSPEC, IEE, 1993), p. 127.Google Scholar
  20. 20.
    R.K. Ahrenkiel, R. Ellingson, S. Johnston and M. Wanlass, Appl. Phys. Lett. 72, 3470 (1999).CrossRefGoogle Scholar
  21. 21.
    M. Gallant and A. Zemel, Appl. Phys. Lett. 52, 1686 (1988).CrossRefGoogle Scholar
  22. 22.
    R. Trommer and L. Hoffmann, Electron. Lett. 22, 360 (1986).CrossRefGoogle Scholar
  23. 23.
    Properties of Lattice-Matched and Strained Indium Gallium Arsenide, ed. P. Bhattacharya, (London: INSPEC, IEE, 1993).Google Scholar
  24. 24.
    Infrared Photon Detectors, ed. A. Rogalski, (Bellingham, SPIE Optical Engineering Press, 1995).Google Scholar
  25. 25.
    S. Paul, J. B. Roy and P.K. Basu, J. Appl. Phys. 69, 827 (1991).CrossRefGoogle Scholar
  26. 26.
    C.H. Henry, R.A. Logan, F.R. Merritt and C.G. Bethea, Electron. Lett. 20, 358 (1984).CrossRefGoogle Scholar
  27. 27.
    W.W. Anderson, Infrared Phys. 20, 363 (1980).CrossRefGoogle Scholar
  28. 28.
    L.J. Kozlowski, K. Vural, J.M. Arias, W.E. Tennant and R.E. DeWames, Proc. SPIE 3182, (SPIE, 1997), p. 2.CrossRefGoogle Scholar
  29. 29.
    G.H. Olsen and M.J. Cohen, Proc. SPIE 3379, (SPIE, 1998), p. 300.CrossRefGoogle Scholar
  30. 30.
    A. Krier and Y. Mao, Infrared Phys. Technol. 38, 397 (1997).CrossRefGoogle Scholar
  31. 31.
    R.M. Lin, S.F. Tang, S.C. Lee, C.H. Kuan, G.S. Chen, T.P. Sun and J.C. Wu, IEEE Trans. Electron Dev. 44, 209 (1997).CrossRefGoogle Scholar
  32. 32.
    R.E. DeWames, D.D. Edwall, M. Zanadian, L.O. Bubulac, J.G. Pasko, W.E. Tennant, J.M. Arias, and A. D’Souza, J. Electron. Mater. 27, 722 (1998).CrossRefGoogle Scholar

Copyright information

© TMS-The Minerals, Metals and Materials Society 1999

Authors and Affiliations

  • Antoni Rogalski
    • 1
  • Robert Ciupa
    • 1
  1. 1.Institute of Applied PhysicsMilitary University of TechnologyWarsawPoland

Personalised recommendations