Journal of Electronic Materials

, Volume 27, Issue 1, pp 18–24 | Cite as

Effects of high temperature annealing on the device characteristics of Ga0.52In0.48P/GaAs and Al0.52In0.48P/GaAs heterojunction bipolar transistors

  • H. K. Yow
  • P. A. Houston
  • C. C. Button
  • J. P. R. David
  • C. M. S. Ng
Regular Issue Paper

Abstract

GaInP/GaAs and AlInP/GaAs heterojunction bipolar transistor (HBT) structures were grown by low pressure metalorganic vapor phase epitaxy and annealed at various temperatures up to 675°C for 15 min. Subsequent comparisons with HBTs fabricated on both annealed and unannealed control samples showed no effects for annealing up to and including 575°C, but significant changes in the electrical characteristics were observed at an annealing temperature of 675°C. For the GaInP/GaAs devices, the base current increased by a significant amount, reducing the gain and increasing the base current ideality factor from 1.07 to 1.9. Photoluminescence and electrical measurements on the structures indicated that both the emitter and base were affected by an increase in the recombination times in those regions. These effects were attributed to an out-diffusion of hydrogen from the base during annealing. The emitter of the AlInP/GaAs HBT was affected less by the hydrogen diffusion because of the larger bandgap. These observations have important implications for device performance dependence on the details of the temperature/time profile subsequent to the base growth.

Key words

AlInP/GaAs annealing GaInP/GaAs heterojunction bipolar transistor (HBT) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.A. Stockman, G.E. Höfler, J.N. Baillargeon, KC. Hsieh, K.Y. Cheng and G.E. Stillman, J. Appl. Phys. 72, 981 (1992).CrossRefGoogle Scholar
  2. 2.
    Y.M. Houng, S.D. Lester, D.E. Mars and J.N. Miller, J. Vac. Sci. Technology B 11, 915 (1993).CrossRefGoogle Scholar
  3. 3.
    B. Lamare, J.L. Benchimol, R. Driad and P. Launay, Electron. Lett. 30, 1356 (1994).CrossRefGoogle Scholar
  4. 4.
    W.Y. Han, Y. Lu, H.S. Lee, M.W. Cole, S.N. Schauer, R.P. Moerkirk, K.A. Jones and L.W. Yang, Appl. Phys. Lett. 61, 87 (1992).CrossRefGoogle Scholar
  5. 5.
    D.M. Kozuch, Michael Stavola, S.J. Pearton, C.R. Abernathy and W.S. Hobson, J. Appl. Phys. 73, 3716 (1993).CrossRefGoogle Scholar
  6. 6.
    Q.J. Hartmann, H. Hwangbo, A. Yung, D.A. Ahmari, M.T. Fresina, J.E. Baker and G.E. Stillman, Appl. Phys. Lett. 68, 982 (1996).CrossRefGoogle Scholar
  7. 7.
    R. Morton, S.S. Lau, D.B. Poker and P.K. Chu, Appl. Phys. Lett. 68, 1135 (1996).CrossRefGoogle Scholar
  8. 8.
    S.J. Pearton and C.R. Abernathy, Appl. Phys. Lett. 55, 678 (1989).CrossRefGoogle Scholar
  9. 9.
    K. Watanabe and H. Yamazaki, Appl. Phys. Lett. 59, 434 (1991).CrossRefGoogle Scholar
  10. 10.
    G.E. Höfler, H.J. Höfler, N. Holonyak, Jr. and K.C. Hsieh, J. Appl. Phys. 72, 5318 (1992).CrossRefGoogle Scholar
  11. 11.
    S.I. Kim, Y. Kim, M.S. Kim, C.K. Kim, S.K. Min and C.C. Lee, J. Cryst. Growth 141, 324 (1994).CrossRefGoogle Scholar
  12. 12.
    S.S. Bahl, L.H. Camnitz, D. Houng and M. Mierzwinski, IEEE Electron Dev. Lett. 17, 446 (1996).CrossRefGoogle Scholar
  13. 13.
    H.K. Yow, P.A. Houston, C.C. Button, T.W. Lee and J.S. Roberts, J. Appl. Phys. 76, 8135 (1994).CrossRefGoogle Scholar
  14. 14.
    C.M.S. Ng, P.A. Houston and H.K. Yow, IEEE Trans. Electron. Dev. 44, 17 (1997).CrossRefGoogle Scholar
  15. 15.
    V.A. Gorbylev, A.A. Chelniy, A.Y. Polyakov, S.J. Pearton, N.B. Smirnov, R.G. Wilson, A.G. Milnes, A.A. Cnekalin, A.V. Govorkov, B.M. Leiferov, O.M. Borodina and A.A. Balmashnov, J. Appl. Phys. 76, 7390 (1994).CrossRefGoogle Scholar
  16. 16.
    M.C. Hanna, A. Majerfeld and D.M. Szmyd, Appl. Phys. Lett. 59, 2001 (1991).CrossRefGoogle Scholar

Copyright information

© TMS-The Minerals, Metals and Materials Society 1998

Authors and Affiliations

  • H. K. Yow
    • 1
  • P. A. Houston
    • 1
  • C. C. Button
    • 1
  • J. P. R. David
    • 1
  • C. M. S. Ng
    • 1
  1. 1.Department of Electronic and Electrical EngineeringThe University of SheffieldSheffieldUK

Personalised recommendations