Skip to main content

Advertisement

Log in

Development of Silicon-Embedded Supercapacitors Utilizing Atomic Layer Deposition and Plasma-Enhanced Chemical Vapor Deposition for Functionalization of Carbon Nanotube Electrodes

  • Topical Collection: Carbon-Based Materials for Energy Storage
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Supercapacitors utilizing carbon nanotube (CNT) electrodes are next-generation energy storage systems. Various CNT functionalization and graphenation processes can enhance carbon nanotube charge densities, while room-temperature ionic liquids can enhance supercapacitor performance. Functionalization by atomic layer deposition of titania provides pseudocapacitive energy storage mechanisms, while graphenation increases the surface area of the electrodes. Utilizing patented silicon etch methods, a silicon-integrated structure was developed with functionalization and graphenation of the CNTs. The supercapacitors with CNT forests functionalized by titania have a specific energy of 39.4 Wh/kg, those with graphenated CNT forests have a specific energy of 26.0 Wh/kg, and the supercapacitors with both functionalizations have a specific energy of 63.4 Wh/kg. Compared to the supercapacitors using bare CNT forests, which have a specific energy of 2.6 Wh/kg, these results show that the addition of these functionalizations significantly improves the device performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S. Arepalli, H. Fireman, C. Huffman, P. Moloney, P. Nikolaev, L. Yowell, K. Kim, P.A. Kohl, C.D. Higgins, S.P. Turano, and W.J. Ready, JOM 57, 26 (2005)

    Article  CAS  Google Scholar 

  2. W.J. Ready, Chip-scale embedded carbon nanotube electrochemical double layer supercapacitor, U.S. Patent No. 9,892,863 B2 (2018)

  3. W.J. Ready, Method of fabricating an electrochemical double-layer capacitor, U.S. Patent No. 10,249,444 B2 (2019)

  4. B. Xu, F. Wu, R. Chen, G. Cao, S. Chen, G. Wang, and Y. Yang, J. Power Sources 158, 773 (2006)

    Article  CAS  Google Scholar 

  5. H.F. Xiang, B. Yin, H. Wang, H.W. Lin, X.W. Ge, S. Xie, and C.H. Chen, Electrochim. Acta 55, 5204 (2010)

    Article  CAS  Google Scholar 

  6. C.L. Pint, N.W. Nicholas, S. Xu, Z. Sun, J.M. Tour, H.K. Schmidt, R.G. Gordon, and R.H. Hauge, Carbon 49, 4890 (2011)

    Article  CAS  Google Scholar 

  7. R.A. Fisher, M.R. Watt, and W. Jud Ready, ECS J. Solid State Sci. Technol. 2, 3170 (2013)

    Article  Google Scholar 

  8. R.A. Fisher, M.R. Watt, R. Konjeti, and W.J. Ready, ECS J. Solid State Sci. Technol. 4, M1 (2015)

    Article  CAS  Google Scholar 

  9. C.B. Parker, A.S. Raut, B. Brown, B.R. Stoner, and J.T. Glass, J. Mater. Res. 27, 1046 (2012)

    Article  CAS  Google Scholar 

  10. B.R. Stoner, A.S. Raut, B. Brown, C.B. Parker, and J.T. Glass, Appl. Phys. Lett. 99, 183104 (2011)

    Article  Google Scholar 

  11. D. Yu, and L. Dai, J. Phys. Chem. Lett. 1, 467 (2010)

    Article  CAS  Google Scholar 

  12. J. Wu, Y. Cao, H. Zhao, J. Mao, and Z. Guo, Carbon Energy 1, 57 (2019)

    Article  CAS  Google Scholar 

  13. H. Wang, and Y. Cui, Carbon Energy 1, 13 (2019)

    Article  Google Scholar 

  14. Z. Peng, J. Lin, R. Ye, E.L.G. Samuel, and J.M. Tour, ACS Appl. Mater. Interfaces 7, 3414 (2015)

    Article  CAS  Google Scholar 

  15. D. Chang, P. Patterson, and P. Liu, Methods of making supercapacitor cells and micro-supercapacitors, U.S. Patent No. 8,778,800 B1 (2014)

  16. S.P. Turano, J. Ready, J. Electron. Mater. 35, 192 (2006)

    Article  CAS  Google Scholar 

  17. M. Kaempgen, C.K. Chan, J. Ma, Y. Cui, and G. Gruner, Nano Lett. 9, 1872 (2009)

    Article  CAS  Google Scholar 

  18. M. Skunik-Nuckowska, K. Grzejszczyk, K. Stolarczyk, R. Bilewicz, and P.J. Kulesza, J. Appl. Electrochem. 44, 497 (2014)

    Article  CAS  Google Scholar 

  19. A.S. Westover, K. Share, R. Carter, A.P. Cohn, L. Oakes, and C.L. Pint, Appl. Phys. Lett. 104, 213905 (2014)

    Article  Google Scholar 

  20. H. Wang, and L. Pilon, Electrochim. Acta 64, 130 (2012)

    Article  CAS  Google Scholar 

  21. A.C.F. Mendonça, N. Dörr, and A.A.H. Pádua, Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 226, 965 (2012)

    Article  Google Scholar 

  22. L.I.N. Tomé, P.J. Carvalho, M.G. Freire, I.M. Marrucho, I.M.A. Fonseca, A.G.M. Ferreira, J.A.P. Coutinho, and R.L. Gardas, J. Chem. Eng. Data 53, 1914 (2008)

    Article  Google Scholar 

  23. K.-S. Kim, B.-K. Shin, H. Lee, Korean J. Chem. Eng. 21, 1010 (2004)

    Article  CAS  Google Scholar 

  24. A. González, E. Goikolea, J.A. Barrena, and R. Mysyk, Renew. Sustain. Energy Rev. 58, 1189 (2016)

    Article  Google Scholar 

  25. N. Jung, S. Kwon, D. Lee, D.-M. Yoon, Y.M. Park, A. Benayad, J.-Y. Choi, and J.S. Park, Adv. Mater. 25, 6854 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank the Georgia Institute of Technology President’s Undergraduate Research Award (PURA) and EngeniusMicro via Defense Microelectronics Activity award HQ0727-14-P-1426 for funding this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jud Ready.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konjeti, R., Allen, J., Turano, S. et al. Development of Silicon-Embedded Supercapacitors Utilizing Atomic Layer Deposition and Plasma-Enhanced Chemical Vapor Deposition for Functionalization of Carbon Nanotube Electrodes. J. Electron. Mater. 50, 5037–5048 (2021). https://doi.org/10.1007/s11664-021-08954-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-08954-0

Keywords

Navigation