Skip to main content
Log in

Field-Effect Transistor Behavior of Synthesized In2O3/InP (100) Nanowires via the Vapor–Liquid–Solid Method

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We demonstrated the feasibility of using InP (100) substrates, a different indium source, for the synthesis of In2O3 nanowires by the vapor–liquid–solid (VLS) method using a 20-nm-thick Au layer as a catalyst. By varying the thickness of the Au layer and the growth temperature (T), the nanowires showed different morphologies. The nanowires grew along the (100) direction and had perfect crystallinity and lengths up to several hundreds of micrometers. The configured field-effect transistor revealed an n-type behavior with 115 μA of the drain-source current, IDS, under 1.0 V of gate voltage, VDS, at 1.33 × 10−4 kPa of pressure and temperature of 20°C. This result indicates that it is feasible to use different In sources to synthesize In2O3 nanowires by the VLS method for electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Li, W. Xu, Y. Qu, M. Wang, G. Liu, and G. Qiao, Inorg. Chem. Commun. 102, 70 (2019).

    CAS  Google Scholar 

  2. J. Gan, X. Lu, J. Wu, S. Xie, T. Zhai, M. Yu, Z. Zhang, Y. Mao, S.C.I. Wang, Y. Shen, and Y. Tong, Sci. Rep. 3, 1021 (2013).

    Google Scholar 

  3. M. Shao, H. Chen, M. Shen, and W. Chen, Colloid Surf. A 529, 503 (2017).

    CAS  Google Scholar 

  4. A. Qurashi, E.M. El-Maghraby, T. Yamazaki, and T. Kikuta, Sens. Actuator B Chem. 147, 48 (2010).

    CAS  Google Scholar 

  5. P. Song, D. Han, H. Zhang, J. Li, Z. Yang, and Q. Wang, Sens. Actuator B Chem. 196, 434 (2014).

    CAS  Google Scholar 

  6. A. Vomiero, S. Bianchi, E. Comini, G. Faglia, M. Ferroni, N. Poli, and G. Sberveglieri, Thin Solid Films 515, 8356 (2007).

    CAS  Google Scholar 

  7. A. Shanmugasundaram, B. Ramireddy, P. Basak, S.V. Manorama, and S. Srinath, J. Phys. Chem. C 118, 6909 (2014).

    CAS  Google Scholar 

  8. G. Jo, J. Maeng, T.-W. Kim, W.-K. Hong, M. Jo, H. Hwang, and T. Lee, Appl. Phys. Lett. 90, 173106 (2007).

    Google Scholar 

  9. Q. Xu, X. Liu, B. Wan, Z. Yang, F. Li, J. Lu, G. Hu, C. Pan, and Z.L. Wang, ACS Nano 12, 9608 (2018).

    CAS  Google Scholar 

  10. S. Hong, J. Shin, Y. Hong, M. Wu, Y. Jeong, D. Jang, G. Jung, J.-H. Bae, and J.-H. Lee, J. Nanosci. Nanotechnol. 19, 6656 (2019).

    CAS  Google Scholar 

  11. L.-C. Chen, C.-H. Tien, and W.-C. Liao, J. Phys. D Appl. Phys. 44, 165101 (2011).

    Google Scholar 

  12. D. Shao, L. Qin, and S. Sawyer, IEEE Photonics J. 4, 715 (2012).

    Google Scholar 

  13. H. Imai, A. Tominaga, H. Hirashima, M. Toki, and M. Aizawa, J. Sol-Gel Sci. Technol. 13, 991 (1998).

    CAS  Google Scholar 

  14. C.Y. Wang, Y. Dai, J. Pezoldt, B. Lu, T. Kups, V. Cimalla, and O. Ambacher, Cryst. Growth Des. 8, 1257 (2008).

    CAS  Google Scholar 

  15. C.Y. Wang, V. Cimalla, H. Romanus, T. Kups, G. Ecke, T. Stauden, M. Ali, V. Lebedev, J. Pezoldt, and O. Ambacher, Appl. Phys. Lett. 89, 011904 (2006).

    Google Scholar 

  16. T.-T. Tseng, J.-Y. Uan, and W.J. Tseng, Ceram. Int. 37, 1775 (2011).

    CAS  Google Scholar 

  17. F.N. Tuzluca, Y.O. Yesilbag, and M. Ertugrul, Appl. Surf. Sci. 427, 956 (2018).

    CAS  Google Scholar 

  18. R.L. Weiher and R.P. Ley, J. Appl. Phys. 37, 299 (1966).

    CAS  Google Scholar 

  19. J. Du, M. Yang, S. Nam Cha, D. Rhen, M. Kang, and D.J. Kang, Cryst. Growth Des. 8, 2312 (2008).

    CAS  Google Scholar 

  20. G. Wang, J. Park, D. Wexler, M.S. Park, and J.-H. Ahn, Inorg. Chem. 46, 4778 (2007).

    CAS  Google Scholar 

  21. B. Zhou, Y. Li, J. Bai, X. Li, F. Li, and L. Liu, Appl. Surf. Sci. 464, 115 (2019).

    CAS  Google Scholar 

  22. G. Shen, B. Liang, X. Wang, P.-C. Chen, and C. Zhou, ACS Nano 5, 2155 (2011).

    CAS  Google Scholar 

  23. J. Kim, Y.S. Rim, H. Chen, H.H. Cao, N. Nakatsuka, H.L. Hinton, C. Zhao, A.M. Andrews, Y. Yang, and P.S. Weiss, ACS Nano 9, 4572 (2015).

    CAS  Google Scholar 

  24. Q. Liu, Y. Liu, F. Wu, X. Cao, Z. Li, M. Alharbi, A.N. Abbas, M.R. Amer, and C. Zhou, ACS Nano 12, 1170 (2018).

    CAS  Google Scholar 

  25. M. Su, Z. Yang, L. Liao, X. Zou, J.C. Ho, J. Wang, J. Wang, W. Hu, X. Xiao, C. Jiang, C. Liu, and T. Guo, Adv. Sci. 3, 1600078 (2016).

    Google Scholar 

  26. R.R. Kumar, K.N. Rao, K. Rajanna, and A.R. Phani, J. Nanosci. Nanotechnol. 14, 5485 (2014).

    CAS  Google Scholar 

  27. S. Kasiviswanathan and G. Rangarajan, J. Appl. Phys. 75, 2572 (1994).

    CAS  Google Scholar 

  28. P.-C. Chen, G. Shen, S. Sukcharoenchoke, and C. Zhou, Appl. Phys. Lett. 94, 043113 (2009).

    Google Scholar 

  29. M. Wu, C. Wang, Y. Zhao, L. Xiao, C. Zhang, X. Yu, B. Luo, B. Hu, W. Fan, and W. Shi, CrystEngComm 17, 2336 (2015).

    CAS  Google Scholar 

  30. X. Tao, Y. Zhao, L. Sun, and S. Zhou, Mater. Chem. Phys. 149–150, 275 (2015).

    Google Scholar 

  31. J. Liu, S. Huang, and L. He, J. Semicond. 36, 123007 (2015).

    Google Scholar 

  32. R.S. Wagner and W.C. Ellis, Appl. Phys. Lett. 4, 89 (1964).

    CAS  Google Scholar 

  33. C.C. Lee, C.Y. Wang, and G. Matijasevic, IEEE Trans. Compon. Hybrids Manuf. Technol. 16, 311 (1993).

    CAS  Google Scholar 

  34. W.B. White and V.G. Keramidas, Spectrochim. Acta. A-M 28, 501 (1972).

    CAS  Google Scholar 

  35. K. Christian, S.G. Rüdiger, and G. Marius, Phys. Status Solidi RRL 8, 554 (2014).

    Google Scholar 

  36. P. Papageorgiou, M. Zervos, and A. Othonos, Nanoscale Res. Lett. 6, 311 (2011).

    Google Scholar 

  37. S. Arooj, T. Xu, X. Hou, Y. Wang, J. Tong, R. Chu, and B. Liu, RSC Adv. 8, 11828 (2018).

    CAS  Google Scholar 

  38. C.K. Latha, M. Raghasudha, Y. Aparna, R.M.D. Ravinder, J.K.P. Veerasomaiah, and D. Shridhar, Mater. Res. 20, 256 (2017).

    CAS  Google Scholar 

  39. L. Van Nang, N. Van Duy, N.D. Hoa, and N. Van Hieu, J. Electron. Mater. 45, 839 (2016).

    Google Scholar 

  40. N. Singh, C. Yan, and P.S. Lee, Sens. Actuator B Chem. 150, 19 (2010).

    CAS  Google Scholar 

  41. X. Zhu, Y. Li, H. Zhang, L. Song, H. Zu, Y. Qin, L. Liu, Y. Li, and F. Wang, J. Alloys Compd. 830, 154578 (2020).

    CAS  Google Scholar 

Download references

Acknowledgments

This research was partially supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2020R1I1A3A04037241) and Graduate University of Science and Technology, Vietnam Academy of Science and Technology (grant no. GUST.STS.ÐT2020-HH10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tien Dai Nguyen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest, and have not competed in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ngo, V.D., Nguyen, T.D., Nguyen, T.T. et al. Field-Effect Transistor Behavior of Synthesized In2O3/InP (100) Nanowires via the Vapor–Liquid–Solid Method. J. Electron. Mater. 50, 59–64 (2021). https://doi.org/10.1007/s11664-020-08548-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08548-2

Keywords

Navigation