Skip to main content
Log in

Effect of Copper Substitution on the Structural, Magnetic, and Dielectric Properties of M-Type Lead Hexaferrite

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In the present study, Cu-substituted M-type lead hexaferrites with chemical composition PbCuxFe12−xO19 (x = 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0) have been synthesized using a co-precipitation method. As-obtained precursors were preheated at 550°C for 4 h in a muffle furnace, followed by final heating at 1150°C for 5 h. All heated samples were characterized using various instrumental techniques like Fourier transform infrared (FTIR), x-ray diffraction (XRD), Mössbauer spectroscopy, vibrating sample magnetometer (VSM), and low-frequency dielectric measurements to investigate the effect of copper substitution on the structural, magnetic, and dielectric properties. FTIR spectra of all heated samples showed two absorption bands confirming the formation of ferrite. XRD analysis of all samples confirmed the formation of a majority of M-type hexaferrite phase with secondary phases. The coercivity (HC), saturation magnetization (MS), and remanence magnetization (Mr) are found to decrease with copper content (except the x = 1.0 composition). The coercivity is found to change from 8 kA m−1 to 27 kA m−1, and this depicts the magnetically soft nature and multi-domain structure of the prepared ferrites. Mössbauer spectra indicate that the 12k site is more affected by Cu substitution. This means that Cu prefers to occupy the 12k site, which increases the ferrimagnetic order and reduces the saturation magnetization. The dielectric study of all heated samples showed the frequency-dependent phenomenon. Each composition showed a single semicircular arc due to contributions of grain and grain boundaries resistance in Cole–Cole plots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Rinaldi and F. Licci, IEEE Trans. Magn. 20, 1267 (1984).

    Google Scholar 

  2. G. Turilli, F. Licci, and S. Rinaldi, J. Magn. Magn. Mater. 59, 127 (1986).

    CAS  Google Scholar 

  3. O. Kubo, T. Ido, and H. Yokohama, IEEE Trans. Mag. 18, 1122 (1982).

    Google Scholar 

  4. K. Heneda and A.H. Morrish, IEEE Trans. Mag. 25, 2597 (1989).

    Google Scholar 

  5. A.A. Pandit, S.S. More, R.G. Dorik, and K.M. Jadhav, Bull. Mater. Sci. 26, 17 (2003).

    Google Scholar 

  6. M. Hashim, S. Shirsath, S.S. Meena, M. Mane, S. Kumar, P. Bhatt, R. Kumar, N. Prasad, S. Alla, J. Shah, R. Kotnala, K. Mohammed, E. Senturk, and J. Alimuddin, J. Alloys Compd. 642, 70 (2015).

    CAS  Google Scholar 

  7. S.D. Kim and J.S. Kim, J. Magn. Magn. Mater. 307, 295 (2006).

    CAS  Google Scholar 

  8. D. Chen, Y. Meng, K. Gandha, D. Zeng, H. Yu, and P. Liu, AIP Adv. 7, 056214 (2017).

    Google Scholar 

  9. S. Hussain and A. Maqsood, Mater. Lett. 62, 1002 (2008).

    CAS  Google Scholar 

  10. L. You, L. Qiao, J. Zheng, M. Jiang, L. Jiang, and J. Sheng, J. Rare Earths 26, 81 (2008).

    Google Scholar 

  11. J. Wang, Mater. Sci. Eng. B 127, 81 (2006).

    CAS  Google Scholar 

  12. M. George, A. Mary John, S.S. Nair, P.A. Joy, and M.R. Anantharaman, J. Magn. Magn. Mater. 302, 190 (2006).

    CAS  Google Scholar 

  13. C. Sudakar, G.N. Subbanna, and T.R.N. Kutty, J. Magn. Mater. 263, 253 (2003).

    CAS  Google Scholar 

  14. R.C. Pullar, Prog. Mater Sci. 57, 1191 (2012).

    CAS  Google Scholar 

  15. F. Leccabue, R. Panizzieri, S. Garcia, N. Suarez, J.L. Sanchez, O. Ares, and X.R. Hua, J. Mater. Sci. 25, 2765 (1990).

    CAS  Google Scholar 

  16. M. Matsuoka, M. Naoe, and Y. Hoshi, J. Appl. Phy. 57, 4040 (1985).

    CAS  Google Scholar 

  17. H. Machida, F. Ohmi, Y. Sawada, Y. Kaneko, A. Watada, and H. Nakamura, J. Magn. Magn. Mater. 54, 1399 (1986).

    Google Scholar 

  18. M. Sugimoto, J. Am. Ceram. Soc. 82, 269 (1999).

    CAS  Google Scholar 

  19. V.G. Harris, Z. Chen, Y. Chen, S. Yoon, T. Sakai, A. Gieler, A. Yang, Y. He, K.S. Ziemer, N.X. Sun, and C. Vittoria, J. Appl. Phys. 99, 08M911 (2006).

    Google Scholar 

  20. R. Valenzuela, Magnetic Ceramics (New York: Cambridge University Press, 1994).

    Google Scholar 

  21. Q.H. Yang, H.W. Zhang, Y.L. Liu, and Q.W. Wen, Mater. Lett. 63, 406 (2009).

    CAS  Google Scholar 

  22. S. Capraro, J.P. Chatelon, M.L. Berre, H. Joisten, T. Rouiller, B. Bayard, D. Barbier, and J.J. Rousseau, J. Magn. Magn. Mater. 272, 1805 (2004).

    Google Scholar 

  23. S.H. Gee, Y.K. Hong, D.W. Erickson, T. Tanaka, and M.H. Park, J. Appl. Phys. 93, 7507 (2003).

    CAS  Google Scholar 

  24. J. Jalli, Y.K. Hong, S. Bae, J.J. Lee, G.S. Abo, A. Lyle, S.H. Gee, H. Lee, T. Mewes, J.C. Sur, and S.I. Lee, J. Appl. Phys. 105, 07A511 (2009).

    Google Scholar 

  25. S. Pignard, H. Vincent, and J.P. Senateur, Thin Solid Films 350, 119 (1999).

    CAS  Google Scholar 

  26. H. Li, J. Huang, Q.F. Li, and X.D. Su, J. Sol Gel. Sci. Technol. 52, 309 (2009).

    CAS  Google Scholar 

  27. Y.Y. Song, J. Das, Z.H. Wang, W. Tong, and C.E. Patton, Appl. Phys. Lett. 93, 172503 (2008).

    Google Scholar 

  28. S.A. Palomares-Sánchez, M.I. González Castro, S. Ponce Castañeda, Chapter 2 Lead Hexaferrite A Brief Review, MRF 57, 23 (2019).

  29. A.L. Guerrero, M. Mirabal-García, S.A. Palomares-Sánchez, and J.R. Martínez, J. Magn. Magn. Mater. 399, 41 (2016).

    CAS  Google Scholar 

  30. S.S. Grabchikov, A.V. Trukhanov, S.V. Trukhanov, I.S. Kazakevich, A.A. Solobay, V.T. Erofeenko, and N.V. Vasilenkov, J. Magn. Magn. Mater. 398, 49 (2016).

    CAS  Google Scholar 

  31. V. Adelsköld, Mineralogioch Geol A12, 1 (1938).

    Google Scholar 

  32. N. Spaldin, Magnetic Material, Fundamentals and Device Applications (Cambridge: Cambridge University Press, 2003).

    Google Scholar 

  33. H. Kojima, Fundamental properties of hexagonal ferrites with magnetoplumbite structure.Ferromagnetic Materials, Vol. 3, ed. E.P. Wohlfarth (Amsterdam: North-Holland Physics Publishing, 1982),

    Google Scholar 

  34. G. Tan and W. Li, J. Am. Ceram. Soc. 98, 1812 (2015).

    CAS  Google Scholar 

  35. V.G. Kostishin, L.V. Panina, L.V. Kozhitov, A.V. Timofeev, A.K. Zyuzin, and A.N. Kovalev, Tech. Phys. 60, 1189 (2015).

    CAS  Google Scholar 

  36. S.E. Jacobo, L. Civale, and M.A. Blesa, J. Magn. Magn. Mater. 260, 37 (2000).

    Google Scholar 

  37. S.A. Oliver, M.L. Chen, I. Kozulin, and C. Vittoria, J. Magn. Magn. Mater. 213, 326 (2000).

    CAS  Google Scholar 

  38. P. Široký, E. Schmidt, F. Lukeš, and J. Humlíček, Phys. Status Solidi 83, 581 (1984).

    Google Scholar 

  39. P. Široký and S. Višňovský, Czech. J. Phys. B 37, 116 (1987).

    Google Scholar 

  40. G. Albanese, S. Díaz-Castañón, F. Leccabue, and B.E. Watts, J. Mater. Sci. 35, 4415 (2000).

    CAS  Google Scholar 

  41. J.C. Faloh-Gandarilla, S. Díaz-Castañón, and F. Leccabue, Phys. Status Solidi B Basic Res. 242, 1784 (2005).

    CAS  Google Scholar 

  42. A.L. Guerrero-Serrano, T. Pérez-Juache, M. Mirabal-García, J.A. Matutes-Aquino, and S.A. Palomares-Sánchez, J. Supercond. Nov. Magn. 24, 2307 (2011).

    CAS  Google Scholar 

  43. E.H. Na, J.H. Lee, S.J. Ahn, K.P. Hon, Y.M. Koo, and H.M. Jang, J. Magn. Magn. Mater. 324, 2866 (2012).

    CAS  Google Scholar 

  44. A.L. Guerrero-Serrano, M. Mirabal-García, and S.A. Palomares-Sánchez, J. Supercond. Nov. Magn. 27, 1709 (2014).

    CAS  Google Scholar 

  45. A. Baykal, S. Yokuş, S. Güner, H. Güngüneş, H. Sözeri, and Md Amir, Ceram. Int. 43, 3475 (2017).

    CAS  Google Scholar 

  46. M. Awawdeh, I. Bsoul, and S. Mahmood, J. Alloys Compd. 585, 465 (2014).

    CAS  Google Scholar 

  47. G. Mendoza-Suarez, J. Corral-Huacuz, M. Contreras-Garcia, and H. Juarez-Medina, J. Magn. Magn. Mater. 234, 73 (2001).

    CAS  Google Scholar 

  48. M. Kuznetsov, Q. Pankhurst, and I. Parkin, J. Mater. Sci. Mater. Electron. 12, 533 (2001).

    CAS  Google Scholar 

  49. R.D. Waldron, Phys. Rev. Lett. 99, 1727 (1955).

    CAS  Google Scholar 

  50. F.M.M. Pereira, C.A.R. Junior, M.R.P. Santos, R.S.T.M. Sohn, F.N.A. Freire, J.M. Sasaki, J.A.C. De-Paiva, and A.S.B. Sombra, J. Mater. Sci. Mater. Electr. 19, 627 (2008).

    CAS  Google Scholar 

  51. T.M. Meaz and C.B. Koch, Hyperfine Interact. 166, 455 (2005).

    CAS  Google Scholar 

  52. H.M. Zaki, S.H. Al-Heniti, and T.A. Elmo Salami, J. Alloys Compd. 633, 104 (2015).

    CAS  Google Scholar 

  53. S. Kong, P. Zhang, X. Wen, P. Pi, J. Cheng, Z. Yang, and J. Hai, Particuology 6, 185 (2008).

    CAS  Google Scholar 

  54. G.L. Tan and M.J. Wang, J. Electroceram. 26, 170 (2011).

    CAS  Google Scholar 

  55. R.D. Shannon, Acta. Cryst. A32, 751 (1976).

  56. M.J. Iqbal, M.N. Ashiq, P.H. Gomez, and J.M. Munoj, Scr. Mater. 57, 1093 (2007).

    CAS  Google Scholar 

  57. I. Ali, M.U. Islam, M.S. Awan, M. Ahmad, and M.A. Iqbal, J. Supercond. Nov. Magn. 26, 3277 (2013).

    CAS  Google Scholar 

  58. M. Ahmad, F. Aen, M.U. Islam, S.B. Niazi, and M.U. Rana, Ceram. Int. 37, 3691 (2011).

    CAS  Google Scholar 

  59. U. Kurtan, R. Topkaya, A. Baykal, and M.S. Toprak, Ceram. Int. 39, 6551 (2013).

    CAS  Google Scholar 

  60. J. Singh, C. Singh, D. Kaur, H. Zaki, I.A. Abdel-Latif, S.B. Narang, R.B. Jotania, S.R. Mishra, R. Joshi, P. Dhruv, M. Ghimire, S.E. Shirsath, and S.S. Meena, J. Alloys Compd. 695, 1112 (2017).

    CAS  Google Scholar 

  61. R. Day, M. Fuller, and V.A. Schmidt, Phys. Earth Planet. Inter. 13, 260 (1977).

    Google Scholar 

  62. C.C. Chauhan, A.R. Kagdi, R.B. Jotania, A. Upadhyay, C.S. Sandhu, S.E. Shirsath, and S.S. Meena, Ceram. Int. 44, 17812 (2018).

    CAS  Google Scholar 

  63. J. Smit and H.P.J. Wijn, Adv. Electron. Electron Phys. 6, 69 (1954).

    Google Scholar 

  64. D.M. Hemeda, A. Al-Sharif, and O.M. Hemeda, J. Magn. Magn. Mater. 315, L1–L7 (2007).

    CAS  Google Scholar 

  65. R.A. Nandotaria, R.B. Jotania, C.S. Sandhu, H. Mohd, S.S. Meena, P. Bhatt, and S.E. Shirsath, Ceram. Int. 44, 4426 (2018).

    CAS  Google Scholar 

  66. D.P.E. Dickson and F.J. Berry, eds., Mössbauer Spectroscopy (Cambridge: Cambridge University Press, 1986).

    Google Scholar 

  67. U. Gonser, eds., Mössbauer Spectroscopy (New York: Springer, 1975).

    Google Scholar 

  68. N.N. Greenwood and T.C. Gibb, Mossbauer Spectroscopy (London: Chapman and Hall Ltd, 1971).

    Google Scholar 

  69. S. Prathap, W. Madhuri, and S.S. Meena, Mater. Chem. Phys. 220, 137 (2018).

    CAS  Google Scholar 

  70. V.A. Rane, S.S. Meena, S.P. Gokhale, S.M. Yusuf, and G.J. Pathak, J. Elec. Mater. 42, 761 (2013).

    CAS  Google Scholar 

  71. K. Sharma, S.S. Meena, S. Saxena, S.M. Yusuf, A. Srinivasan, and G.P. Kothiyal, Mater. Chem. Phys. 133, 144 (2012).

    CAS  Google Scholar 

  72. K. Sharma, A. Dixit, S. Singh, S. Bhattacharya, C.L. Prajapat, P.K. Sharma, S.M. Yusuf, A.K. Tyagi, and G.P. Kothiyal, J. Mater. Sci. Eng. C. 29, 2226 (2009).

    CAS  Google Scholar 

  73. K. Sharma, S. Singh, C.L. Prajapat, S. Bhattacharya, M.R. Singh, S.M. Yusuf, and G.P. Kothiyal, J. Magn. Magn. Mater. 321, 3821–3828 (2009).

    CAS  Google Scholar 

  74. A.R. Kagdi, N.P. Solanki, F.E. Carvalho, S.S. Meena, P. Bhatt, R.C. Pullar, and R.B. Jotania, J. Alloys Compd. 741, 377 (2018).

    CAS  Google Scholar 

  75. K. Sharma, C.L. Prajapat, S.S. Meena, M.R. Singh, S.M. Yusuf, L. Montagne, and G.P. Kothiyal, J. Magn. Magn. Mater. 345, 24 (2013).

    CAS  Google Scholar 

  76. J.C. Maxwell, A Treatise on Electricity and Magnetism (Oxford: Clarandon Press, 1873).

    Google Scholar 

  77. K.W. Wagner, Ann. Phys. 345, 817 (1973).

    Google Scholar 

  78. C.G. Koops, Phys. Rev. 83, 121 (1951).

    CAS  Google Scholar 

  79. L. Shrideshmukh, K.K. Kumar, S.B. Laxman, A.R. Krishna, and G. Sathaiah, Bull. Mater. Sci. 21, 219 (1998).

    Google Scholar 

  80. S. Dutta, R.N.P. Choudhry, and P.K. Sinha, Phys. Status Solidi 202, 1172 (2005).

    CAS  Google Scholar 

  81. R. Metselaar and P.K. Larsen, Physics of Magnetic Garnets, Enrico Fermi International School (Bologna: SocietaItaliana di Fisica, 1978), p. 417.

    Google Scholar 

  82. A.K. Jonscher, Dielectric Relaxation in Solids (London: Chelsea Dielectrics pub, 1983).

    Google Scholar 

  83. M.A. El Hitti, J. Magn. Magn. Mater. 164, 187 (1996).

    Google Scholar 

  84. A.M. Bhavikatti, S. Kulkarni, and A. Lagashetty, Int. J. Eng. Sci. Tech. 2, 6532 (2010).

    Google Scholar 

  85. M.P. Reddy, W. Madhuri, M.V. Ramana, G. Balakrishnaiah, N.R. Reddy, K.V.S. Kumar, V.R.K. Murthy, and R.R. Reddy, J. Phys. Chem. Solids 71, 1373 (2010).

    Google Scholar 

  86. Y. Bai, J. Zhou, Z. Gui, and L. Li, J. Magn. Magn. Mater. 278, 208 (2004).

    CAS  Google Scholar 

  87. M.G. Chourashiya, J.Y. Patil, S.H. Pawar, and L.D. Jadhav, Mater. Chem. Phys. 109, 39 (2008).

    CAS  Google Scholar 

Download references

Acknowledgments

This work was carried out under DRS-SAP (Phase-II, F.530/10/DRS-II/2018 (SAP-I)) program, UGC, New Delhi, India, and DST-FIST (level-I, No. SR/FST/PSI-198/2014) Grant.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sher Singh Meena, Charanjeet Singh Sandhu or Rajshree B. Jotania.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parmar, D.D., Dhruv, P.N., Meena, S.S. et al. Effect of Copper Substitution on the Structural, Magnetic, and Dielectric Properties of M-Type Lead Hexaferrite. J. Electron. Mater. 49, 6024–6039 (2020). https://doi.org/10.1007/s11664-020-08326-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08326-0

Keywords

Navigation