Skip to main content
Log in

Investigation of the Effect of Thermal Annealing on the Electrical Properties of the Near-Surface Layer of MBE n-HgCdTe Using MIS Techniques

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Heteroepitaxial n-Hg0.78Cd0.22Te films with near-surface graded-gap layers were grown by molecular beam epitaxy and subjected to two-stage thermal annealing in saturated mercury vapor atmosphere. The first stage of annealing was carried out for 2 h at a temperature of 360°C. The second stage was carried out at a temperature of 220°C for 24 h. Similar annealing was carried out after As+ ion implantation to activate the introduced impurity and anneal radiation defects. Based on as-grown and annealed films, metal–insulator–semiconductor (MIS) structures were formed by depositing an Al2O3 dielectric by plasma atomic layer deposition. The admittance of fabricated MIS structures was studied in a wide range of frequencies and temperatures. It was found that after thermal annealing, the properties of the n-HgCdTe surface layer are noticeably changed, which is manifested as a decrease in the density of slow states in the transition layer between the dielectric and the semiconductor, and an increase in the generation of minority charge carriers in the n-HgCdTe near-surface layer. These changes in the properties of n-HgCdTe after thermal annealing are associated with the modification of the defect system of the near-surface layer of the semiconductor and the transition layer between dielectric and semiconductor. No significant changes were detected in the bulk properties of the epitaxial film after thermal annealing. A decrease in the density of states near the interface between HgCdTe and Al2O3 during thermal annealing makes it possible to facilitate the electrical characterization of MIS structures by suppressing hysteresis phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Rogalski, Infrared and Terahertz Detectors, 3rd ed. (Boca Raton: CRC Press, 2019).

    Book  Google Scholar 

  2. M.A. Kinch, J. Electron. Mater. 44, 2969 (2015).

    Article  CAS  Google Scholar 

  3. L. Mollard, G. Bourgeois, C. Lobre, S. Gout, S. Viollet-Bosson, N. Baier, G. Destefanis, O. Gravrand, J.P. Barnes, F. Milesi, A. Kerlain, L. Rubaldo, and A. Manissadjian, J. Electron. Mater. 43, 802 (2014).

    Article  CAS  Google Scholar 

  4. W. Qiu, W. Hu, C. Lin, X. Chen, and W. Lu, Opt. Lett. 41, 828 (2016).

    Article  CAS  Google Scholar 

  5. A. Kerlain, A. Brunner, D. Sam-Giao, N. Pére-Laperne, L. Rubaldo, V. Destefanis, F. Rochette, and C. Cervera, J. Electron. Mater. 45, 4557 (2016).

    Article  CAS  Google Scholar 

  6. L.O. Bubulac, J. Cryst. Growth 86, 723 (1988).

    Article  CAS  Google Scholar 

  7. G.L. Destefanis, J. Cryst. Growth 86, 700 (1988).

    Article  CAS  Google Scholar 

  8. L. Mollard, G. Destefanis, N. Baier, J. Rothman, P. Ballet, J.P. Zanatta, M. Tchagaspanian, A.M. Papon, G. Bourgeois, J.P. Barnes, C. Pautet, and P. Fougères, J. Electron. Mater. 38, 1805 (2009).

    Article  CAS  Google Scholar 

  9. I.I. Izhnin, I.I. Syvorotka, O.I. Fitsych, V.S. Varavin, S.A. Dvoretsky, D.V. Marin, N.N. Mikhailov, V.G. Remesnik, M.V. Yakushev, K.D. Mynbaev, A.V. Voitsekhovsky, and A.G. Korotaev, Semicond. Sci. Technol. 34, 035009 (2019).

    Article  CAS  Google Scholar 

  10. C. Lobre, D. Jalabert, I. Vickridge, E. Briand, D. Benzeggouta, L. Mollard, P.H. Jouneau, and P. Ballet, Nucl. Instrum. Methods Phys. Res., Sect. B 313, 76 (2013).

    Article  CAS  Google Scholar 

  11. C. Lobre, P.H. Jouneau, L. Mollard, and P. Ballet, J. Electron. Mater. 43, 2908 (2014).

    Article  CAS  Google Scholar 

  12. O.Y. Bonchyk, H.V. Savytskyy, Z. Swiatek, Y. Morgiel, I.I. Izhnin, A.V. Voitsekhovskii, A.G. Korotaev, K.D. Mynbaev, O.I. Fitsych, V.S. Varavin, S.A. Dvoretsky, D.V. Marin, and M.V. Yakushev, Appl. Nanosci. 9, 725 (2019).

    Article  CAS  Google Scholar 

  13. S.Y. An, J.S. Kim, D.W. Seo, and S.H. Suh, J. Electron. Mater. 31, 683 (2002).

    Article  CAS  Google Scholar 

  14. V.S. Varavin, V.V. Vasiliev, S.A. Dvoretsky, N.N. Mikhailov, V.N. Ovsyuk, Y.G. Sidorov, A.O. Sulslyakov, M.V. Yakushev, and A.L. Aseev, Opto-Electron. Rev. 11, 99 (2003).

    CAS  Google Scholar 

  15. A.P. Kovchavtsev, G.Y. Sidorov, A.E. Nastovjak, A.V. Tsarenko, I.V. Sabinina, and V.V. Vasilyev, J. Appl. Phys. 121, 125304 (2017).

    Article  Google Scholar 

  16. A.V. Voitsekhovskii, S.N. Nesmelov, and S.M. Dzyadukh, J. Electron. Mater. 47, 2694 (2018).

    Article  CAS  Google Scholar 

  17. E.R. Zakirov, V.G. Kesler, G.Y. Sidorov, I.P. Prosvirin, A.K. Gutakovsky, and V.I. Vdovin, Semicond. Sci. Technol. 34, 065007 (2016).

    Article  Google Scholar 

  18. L. Mangin, F. Rochette, C. Lobre, P. Ballet, P. Duvaut, A. Chorier, B. Polge, J.L. Santailler, and G. Ghibaudo, J. Electron. Mater. 48, 6084 (2019).

    Article  CAS  Google Scholar 

  19. E.H. Nicollian and J.R. Brews, MOS Physics and Technology (New York: Wiley, 1982).

    Google Scholar 

  20. J.P. Rosbeck and M.E. Harper, J. Appl. Phys. 62, 1717 (1987).

    Article  CAS  Google Scholar 

  21. A.V. Voitsekhovskii, S.N. Nesmelov, and S.M. Dzyadukh, J. Phys. Chem. Sol. 102, 42 (2017).

    Article  CAS  Google Scholar 

  22. A.V. Voitsekhovskii, S.N. Nesmelov, and S.M. Dzyadukh, Russ. Phys. J. 58, 540 (2015).

    Article  CAS  Google Scholar 

  23. A.V. Voitsekhovskii, S.N. Nesmelov, S.M. Dzyadukh, V.S. Varavin, S.A. Dvoretsky, N.N. Mikhailov, M.V. Yakushev, and G.Y. Sidorov, Vacuum 158, 136 (2018).

    Article  CAS  Google Scholar 

  24. T. Nakagawa and H. Fujisada, Appl. Phys. Lett. 31, 348 (1987).

    Article  Google Scholar 

  25. Y.G. Sidorov, S.A. Dvoretskii, V.S. Varavin, N.N. Mikhailov, M.V. Yakushev, and I.V. Sabinina, Semiconductors 35, 1045 (2001).

    Article  CAS  Google Scholar 

  26. I.I. Izhnin, A.I. Izhnin, H.V. Savytskyy, M.M. Vakiv, Y.M. Stakhira, O.E. Fitsych, M.V. Yakushev, A.V. Sorochkin, I.V. Sabinina, S.A. Dvoretsky, Y.G. Sidorov, V.S. Varavin, M. Pociask-Bialy, and K.D. Mynbaev, Semicond. Sci. Technol. 27, 035001 (2012).

    Article  Google Scholar 

  27. A.V. Voitsekhovskii, S.N. Nesmelov, and S.M. Dzyadukh, Thin Solid Films 522C, 261 (2012).

    Article  Google Scholar 

  28. R. Fu and J. Pattison, Opt. Eng. 51, 104003-1 (2012).

    Article  Google Scholar 

  29. P. Zhang, Z.-H. Ye, C.-H. Sun, Y.-Y. Chen, T.-N. Zhang, X. Chen, C. Lin, R.-J. Ding, and L. He, J. Electron. Mater. 45, 4716 (2016).

    Article  CAS  Google Scholar 

  30. A.V. Voitsekhovskii, S.N. Nesmelov, S.M. Dzyadukh, S.A. Dvoretsky, N.N. Mikhailov, G.Y. Sidorov, and M.V. Yakushev, J. Phys. D Appl. Phys. 53, 055107 (2019).

    Article  Google Scholar 

  31. A.V. Voitsekhovskii, S.N. Nesmelov, and S.M. Dzyadukh, Opto-Electron. Rev. 22, 236 (2014).

    Article  CAS  Google Scholar 

  32. A.V. Voitsekhovskii, S.N. Nesmelov, S.M. Dzyadukh, V.V. Vasilev, V.S. Varavin, S.A. Dvoretsky, N.N. Mikhailov, M.V. Yakushev, and G.Y. Sidorov, Phys. Stat. Sol. (c) 13, 647 (2016).

    Article  CAS  Google Scholar 

  33. A.V. Voitsekhovskii, S.N. Nesmelov, S.M. Dzyadukh, V.S. Varavin, V.V. Vasil’ev, S.A. Dvoretskii, N.N. Mikhailov, M.V. Yakushev, and G.Y. Sidorov, Russ. Phys. J. 60, 360 (2017).

    Article  CAS  Google Scholar 

  34. A.V. Voitsekhovskii, S.N. Nesmelov, S.M. Dzyadukh, V.S. Varavin, S.A. Dvoretskii, N.N. Mikhailov, and GYu Sidorov, Infrared Phys. Technol. 87, 129 (2017).

    Article  CAS  Google Scholar 

  35. W. Van Gelder and E.H. Nicollian, J. Electrochem. Soc. 118, 138 (1971).

    Article  Google Scholar 

  36. J.R. Brews, J. Appl. Phys. 44, 3228 (1973).

    Article  Google Scholar 

  37. T. Sasaki and N. Oda, J. Appl. Phys. 78, 3121 (1995).

    Article  CAS  Google Scholar 

  38. S.M. Farrell, M.V. Rao, G. Brill, Y.C.P. Wijewarnasuriya, N. Dhar, D. Benson, and K. Harris, J. Electron. Mater. 40, 1727 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Voitsekhovskii.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voitsekhovskii, A.V., Nesmelov, S.N., Dzyadukh, S.M. et al. Investigation of the Effect of Thermal Annealing on the Electrical Properties of the Near-Surface Layer of MBE n-HgCdTe Using MIS Techniques. J. Electron. Mater. 49, 3202–3208 (2020). https://doi.org/10.1007/s11664-020-08005-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08005-0

Keywords

Navigation