Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Optoelectronic Properties of MoS2/g-ZnO van der Waals Heterostructure Investigated by First-Principles Calculations

  • 9 Accesses

Abstract

The structural and optoelectronic properties of a MoS2-based heterostructure with a MoS2 monolayer stacked on a ZnO monolayer (g-ZnO) are calculated by first-principle simulations. MoS2/g-ZnO is a typical type II, indirect-bandgap van der Waals heterostructure. With the coupling interaction in the MoS2/g-ZnO heterostructure, the bandgap reduces with respect to both individual sheets, resulting in broadening of the absorption edges towards visible and near-infrared regions. For application in water splitting, the energy levels of the conduction-band minimum and valence-band maximum of the heterostructure are respectively high enough for water reduction and low enough for water oxidation, making this a promising functional material. For the MoS2 monolayer, the photocatalyst efficiency is limited by the high recombination rate of photogenerated electron–hole pairs. On the contrary, for the MoS2/g-ZnO van der Waals heterostructure, a large built-in electric field is formed at the interface, effectively facilitating separation of photogenerated electron–hole pairs and promoting its photocatalytic efficiency. This indicates that such MoS2/g-ZnO van der Waals heterostructures possess great prospects for application in photocatalytic and photovoltaic devices.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    A.K. Geim and K.S. Novoselov, Nat. Mater. 6, 183 (2007).

  2. 2.

    A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, and A.K. Geim, Rev. Mod. Rhys. 81, 109 (2009).

  3. 3.

    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Science 306, 666 (2004).

  4. 4.

    S.Z. Butler, S.M. Hollen, L.Y. Cao, Y. Cui, J.A. Gupta, H.R. Gutierrez, T.F. Heinz, S.S. Hong, J.X. Huang, A.F. Ismach, E. Johnston-Halperin, M. Kuno, V.V. Plashnitsa, R.D. Robinson, R.S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M.G. Spencer, M. Terrones, W. Windl, and J.E. Goldberger, ACS Nano 7, 2898 (2013).

  5. 5.

    F.A. Rasmussen and K.S. Thygesen, J. Phys. Chem. C 119, 13169 (2015).

  6. 6.

    Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, and M.S. Strano, Nat. Nanotechnol. 7, 699 (2012).

  7. 7.

    T. Cheiwchanchamnangij and W.R. Lambrecht, Phys. Rev. B Condens. Matter Mater. Phys. 85, 205302 (2012).

  8. 8.

    K.F. Mak, C. Lee, J. Hone, J. Shan, and T.F. Heinz, Phys. Rev. Lett. 105, 136805 (2010).

  9. 9.

    A.B. Laursen, S. Kegnaes, S. Dahl, and I. Chorkendorff, Energy Environ. Sci. 5, 5577 (2012).

  10. 10.

    H.L. Zhuang and R.G. Henning, J. Phys. Chem. C 117, 20440 (2013).

  11. 11.

    T. Musso, P.V. Kumar, A.S. Foster, and J.C. Grossman, ACS Nano 8, 11432 (2014).

  12. 12.

    K. Kósmider and J. Fernández-Rossier, Phys. Rev. B Condens. Matter Mater. Phys. 87, 075451 (2013).

  13. 13.

    R. Gillen, J. Robertson, and J. Maultzsch, Phys. Rev. B Condens. Matter Mater. Phys. 90, 075437 (2014).

  14. 14.

    W. Hu, T. Wang, and J. Yang, J. Mater. Chem. C 3, 4756 (2015).

  15. 15.

    M. Sun, J.-P. Chou, Q. Ren, Y. Zhao, J. Yu, and W. Tang, Appl. Phys. Lett. 110, 173105 (2017).

  16. 16.

    Q.H. Ta, L. Zhao, D. Pohl, J. Pang, B. Trzebicka, B. Rellinghaus, D. Pribat, T. Gemming, Z. Liu, A. Bachmatiuk, and H.M. Rümmeli, Crystals 6, 100 (2016).

  17. 17.

    B.N. Pal, B.M. Dhar, K.C. See, and H.E. Katz, Nat. Mater. 8, 898 (2009).

  18. 18.

    Z.C. Tu, J. Comput. Theor. Nanosci. 7, 1182 (2010).

  19. 19.

    C.L. Freeman, F. Claeyssens, N.L. Allan, and J.H. Harding, Phys. Rev. Lett. 96, 066102 (2006).

  20. 20.

    C. Tusche, H.L. Meyerheim, and J. Kirschner, Phys. Rev. Lett. 99, 026102 (2007).

  21. 21.

    J. Lee, D.C. Sorescu, and X. Deng, J. Phys. Chem. Lett. 7, 1335 (2016).

  22. 22.

    Y.-H. Tan, K. Yu, J.-Z. Li, H. Fu, and Z.-Q. Zhu, J. Appl. Phys. 116, 064305 (2014).

  23. 23.

    Y.-J. Yuan, F. Wang, B. Hu, H.-W. Lu, Z.-T. Yu, and Z.-G. Zou, Dalton Trans. 44, 10997 (2015).

  24. 24.

    F. Xue, L.B. Chen, J. Chen, J.B. Liu, L.F. Wang, M.X. Chen, Y.K. Pang, X.N. Yang, G.Y. Gao, J.Y. Zhai, and Z.L. Wang, Adv. Mater. 28, 3391 (2016).

  25. 25.

    G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).

  26. 26.

    G. Kresse and D. Joubert, Phys. Rev. B: Condens. Matter Mater. Phys. 59, 1758 (1999).

  27. 27.

    J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

  28. 28.

    J. Heyd, G.E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 118, 8207 (2003).

  29. 29.

    J. Heyd, G.E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 124, 219906 (2006).

  30. 30.

    S. Grimme, J. Comput. Chem. 27, 1787 (2006).

  31. 31.

    T. Kerber, M. Sierka, and J. Sauer, J. Comput. Chem. 29, 2088 (2008).

  32. 32.

    H.J. Monkhorst and J.D. Pack, Phys. Rev. B: Solid State. 13, 5188 (1976).

  33. 33.

    P. Lu, X. Wu, W. Guo, and X.C. Zeng, Phys. Chem. Chem. Phys. 14, 13035 (2012).

  34. 34.

    V. Chakrapani, J.C. Angus, A.B. Anderson, S.D. Wolter, B.R. Stoner, and G.U. Sumanasekera, Science 318, 1424 (2007).

  35. 35.

    E. Benavente, F. Durán, C. Sotomayor-Torres, and G. González, J. Phys. Chem. Solids 113, 119 (2008).

  36. 36.

    W. Tang, E. Sanville, and G. Henkelman, J. Phys. Condens. Matter 21, 84204 (2009).

  37. 37.

    G. Henkelman, A. Arnaldsson, and H. Jónsson, Comput. Mater. Sci. 36, 354 (2006).

  38. 38.

    E. Sanville, S.D. Kenny, R. Smith, and G. Henkelman, J. Comput. Chem. 28, 899 (2007).

Download references

Author information

Correspondence to Huahan Zhan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yao, H., Yao, Q., Wang, H. et al. Optoelectronic Properties of MoS2/g-ZnO van der Waals Heterostructure Investigated by First-Principles Calculations. Journal of Elec Materi (2020). https://doi.org/10.1007/s11664-020-07997-z

Download citation

Keywords

  • van der Waals heterostructure
  • optoelectronic properties
  • water splitting
  • photovoltaic and photocatalytic devices