Effect of Au Doping on Elastic, Thermodynamic, and Electronic Properties of η-Cu6Sn5 Intermetallic

  • Xiang Lin
  • Weiwei ZhangEmail author
  • Zhuo Mao
  • Yali Tian
  • Xiaodong Jian
  • Wei Zhou
  • Ping WuEmail author


The effects of substitution of Au for Cu on the elastic, thermodynamic, and electronic properties of hexagonal η-Cu6Sn5 intermetallic compound (IMC) are investigated by first-principles calculations. The results show that Au atoms preferentially occupy Cu4 or Cu3 site to form η-Cu5Au1Sn5 or η-Cu4Au2Sn5 IMC, respectively. Doping Au in η-Cu6Sn5 IMC forms a more stable thermodynamic structure than pure phase. The ductility of η-Cu6Sn5 IMC increases after substitution of Au for Cu. However, doping Au weakens the Young’s modulus, shear modulus, hardness, and Debye temperature of η-Cu6Sn5 IMC. The results for the charge density difference, total density of states, and partial density of states show that doping Au atoms can stabilize the structure of η-Cu6Sn5 IMC.


Intermetallic compounds first-principles calculations mechanical properties thermodynamic properties electronic structure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Natural Science Foundation of China (51572190 & 51805497).


  1. 1.
    T. Laurila, V. Vuorinen, and J.K. Kivilahti, Mater. Sci. Eng. R. 49, 1 (2005).CrossRefGoogle Scholar
  2. 2.
    J.D. Bernal, Nature 122, 54 (1928).CrossRefGoogle Scholar
  3. 3.
    K. Larsson, L. Stenberg, and S. Lidin, Acta. Cryst. B 50, 636 (1994).CrossRefGoogle Scholar
  4. 4.
    G.C.D. Gangulee and M.B. Bever, Metall. Mater. Trans. B 4, 2063 (1973).CrossRefGoogle Scholar
  5. 5.
    K. Nogita, Intermetallics 18, 145 (2010).CrossRefGoogle Scholar
  6. 6.
    K. Nogita, C.M. Gourlay, S.D. McDonald, Y.Q. Wu, and J. Read, Scr. Mater. 65, 922 (2011).CrossRefGoogle Scholar
  7. 7.
    K. Nogita, C.M. Gourlay, and T. Nishimura, JOM 61, 45 (2009).CrossRefGoogle Scholar
  8. 8.
    Y. Yu and J.G. Duh, Scr. Mater. 65, 783 (2011).CrossRefGoogle Scholar
  9. 9.
    U. Schwingenschlogl, C. Di Paola, K. Nogita, and C.M. Gourlay, Appl. Phys. Lett. 96, 061908 (2010).CrossRefGoogle Scholar
  10. 10.
    G. Zeng, S.D. McDonald, Q.F. Gu, S. Suenaga, Y. Zhang, J.H. Chen, and K. Nogita, Intermetallics 43, 85 (2013).CrossRefGoogle Scholar
  11. 11.
    J. Chen, C.M. Chen, R.H. Horng, D.S. Wuu, and J.S. Hong, J. Electron. Mater. 39, 2618 (2010).CrossRefGoogle Scholar
  12. 12.
    Y. Liu, F.L. Sun, H. Zhang, T. Xin, C.A. Yuan, and G.Q. Zhang, Microelectron. Reliab. 55, 1234 (2015).CrossRefGoogle Scholar
  13. 13.
    F. Yang and S.W. Chen, Intermetallics 18, 672 (2010).CrossRefGoogle Scholar
  14. 14.
    C.W. Chang, Q.P. Lee, C.E. Ho, and C.R. Kao, J. Electron. Mater. 35, 366 (2006).CrossRefGoogle Scholar
  15. 15.
    G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).CrossRefGoogle Scholar
  16. 16.
    G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).CrossRefGoogle Scholar
  17. 17.
    K. Nogita, D. Mu, S.D. McDonald, J. Read, and Y.Q. Wu, Intermetallics 26, 78 (2012).CrossRefGoogle Scholar
  18. 18.
    S. Shang, Y. Wang, and Z.K. Liu, Appl. Phys. Lett. 90, 101909 (2007).CrossRefGoogle Scholar
  19. 19.
    R. Hill, Proc. Phys. Soc. A 65, 349 (1952).CrossRefGoogle Scholar
  20. 20.
    J.J. Yu, J.Y. Wu, L.J. Yu, H.W. Yang, and C.R. Kao, J. Mater. Sci. 52, 7166 (2017).CrossRefGoogle Scholar
  21. 21.
    G. Ghosh, J. Mater. Res. 19, 1439 (2004).CrossRefGoogle Scholar
  22. 22.
    R.R. Chromik, R.P. Vinci, S.L. Allen, and M.R. Notis, J. Mater. Res. 18, 2251 (2003).CrossRefGoogle Scholar
  23. 23.
    L. Jiang and N. Chawla, Scr. Mater. 63, 480 (2010).CrossRefGoogle Scholar
  24. 24.
    G. Ghosh and M. Asta, J. Mater. Res. 20, 3102 (2005).CrossRefGoogle Scholar
  25. 25.
    K. Mu, H. Tsukamoto, and H. Huang, Mater. Sci. Forum 654–656, 2450 (2010).CrossRefGoogle Scholar
  26. 26.
    D.K. Mu, H. Huang, S.D. McDonald, and K. Nogita, J. Electron. Mater. 42, 304 (2013).CrossRefGoogle Scholar
  27. 27.
    C. Yu, J. Liu, H. Lu, and P. Li, Intermetallics 15, 1471 (2007).CrossRefGoogle Scholar
  28. 28.
    S.X. Chen, W. Zhou, and P. Wu, Intermetallics 54, 187 (2014).CrossRefGoogle Scholar
  29. 29.
    O.L. Anderson, J. Phys. Chem. Solids 24, 909 (1963).CrossRefGoogle Scholar
  30. 30.
    D.G. Cahill, S.K. Watson, and R.O. Pohl, Phys. Rev. B 10, 6131 (1992).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2020

Authors and Affiliations

  1. 1.Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Department of Applied Physics, Institute of Advanced Materials Physics, Faculty of ScienceTianjin UniversityTianjinPeople’s Republic of China
  2. 2.Institute of Electronic EngineeringChina Academy of Engineering PhysicsMianyangPeople’s Republic of China
  3. 3.Department of Applied PhysicsTianjin University of CommerceTianjinPeople’s Republic of China
  4. 4.National Supercomputer Center in TianjinTianjinPeople’s Republic of China

Personalised recommendations