Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

A Temperature Sensor Based on Al/p-Si/CuCdO2/Al Diode for Low Temperature Applications

  • 6 Accesses

Abstract

CuCdO2 delafossite oxide film as an interface layer was coated by sol–gel spin coating on p-Si substrate, and thus an Al/p-Si/CuCdO2/Al diode was fabricated. Scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS) was used to obtain an image of the CuCdO2 oxide film. The temperature-dependent behavior of the diode was studied by current–voltage (IV) and capacitance/conductance–voltage (C/GV) measurements over the 100–400 K temperature range. It is observed that the ideality factor (n) decreases and zero-bias barrier height (Φb0) increases with an increase in temperature. This abnormal behavior of n and Φb0 is attributed to barrier inhomogeneities by assuming Gaussian distribution (GD) at the metal–semiconductor interface. For each temperature, the barrier height values obtained from both the conventional IV and Norde method show good agreement with each other. The IVT characteristics have shown the GD, giving a mean barrier height (\( {\bar{\Phi }}_{b0} \)) of 1.04 eV and a standard deviation (σs) of 0.12 V. A modified Richardson plot of [ln(I0/T2) − q2σs2/2k2T2 versus q/kT] yields \( {\bar{\Phi }}_{b0} \) and A* as 1.06 eV and 31.21 A cm−2 K−2 (indicating an agreement with the theoretical value of 32 A cm−2 K−2), showing the promise of CuCdO2/Si as temperature sensing with a Schottky junction. In addition, CV and GV measurements show that the C value decreases and the G value increases as the frequency increases, depending on a continuous distribution of interface states. Also, the capacitance and the conductance values decrease with increasing temperature. The results suggest that Al/p-Si/CuCdO2/Al diode can be used for temperature sensing applications.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    F. Trani, J. Vidal, S. Botti, and M.A.L. Marques, Phys. Rev. B 82, 085115 (2010).

  2. 2.

    E. Guilmeau, A. Maignan, and C. Martin, J. Electron. Mater. 38, 1104 (2009).

  3. 3.

    K.G. Godinho, B.J. Morgan, J.P. Allen, D.O. Scanlon, and G.W. Watson, J. Phys. Condens. Matter 23, 334201 (2011).

  4. 4.

    M. Yu, T.I. Draskovic, and Y. Wu, Phys. Chem. Chem. Phys. 16, 5026 (2014).

  5. 5.

    C. Ruttanapun, J. Appl. Phys. 114, 113108 (2013).

  6. 6.

    M. Snure and A. Tiwaria, Appl. Phys. Lett. 91, 092123 (2007).

  7. 7.

    A. Stadler, Materials 5, 661 (2012).

  8. 8.

    M. Mansoor, I. Haneef, S. Akhtar, A. De Luca, and F. Udrea, Sens. Actuators A 232, 63 (2015).

  9. 9.

    S. Santra, P.K. Guha, S.Z. Ali, I. Haneef, and F. Udrea, IEEE Sens. J. 10, 997 (2010).

  10. 10.

    A. De Luca, V. Pathirana, S.Z. Ali, D. Dragomirescu, and F. Udrea, Sens. Actuators A 222, 31 (2015).

  11. 11.

    E.H. Rhoderick and R.H. Williams, Metal-Semiconductor Contacts, 2nd ed. (Oxford: Clarendon Press, 1988).

  12. 12.

    S.M. Sze and K.K. Ng, Physics of Semiconductor Devices, 3rd ed. (Chichester: Wiley, 2007).

  13. 13.

    B.L. Sharma, Metal-Semiconductor Schottky Barrier Junctions and Their Applications (New York: Plenum, 1984).

  14. 14.

    R.T. Tung, Phys. Rev. B 45, 13509 (1992).

  15. 15.

    J.H. Werner and H.H. Guttler, J. Appl. Phys. 69, 1522 (1991).

  16. 16.

    R.O. Ocaya, A. Al-Ghamdi, F. El-Tantawy, W.A. Farooq, and F. Yakuphanoglu, J. Alloys Compd. 674, 277 (2016).

  17. 17.

    I. Jyothi, H.-D. Yang, K.-H. Shim, V. Janardhanam, S.-M. Kang, H. Hong, and C.-J. Choi, Mater. Trans. 54, 1655 (2013).

  18. 18.

    M. Soylu and H.S. Kader, J. Electron. Mater. 45, 5756 (2016).

  19. 19.

    V.S. Nirwal, K.R. Peta, V.R. Reddy, and M.D. Kim, J. Alloys Compd. 705, 782 (2017).

  20. 20.

    Ş. Karataş, Ş. Altındal, A. Türüt, and M. Cakar, Phys. B 392, 43 (2007).

  21. 21.

    B. Asha, C.S. Harsha, R. Padma, and V.R. Reddy, J. Electron. Mater. 47, 4140 (2018).

  22. 22.

    Ç. Oruç and A. Altındal, Appl. Phys. A 124, 81 (2018).

  23. 23.

    H. Norde, J. Appl. Phys. 50, 5052 (1979).

  24. 24.

    M. Gedikpınar, M. Cavas, Z.A. Alahmed, and F. Yakuphanoglu, Superlatt. Microstr. 59, 123 (2013).

  25. 25.

    A. Kumar, S. Arafin, M.C. Amann, and R. Singh, Nanoscale Res. Lett. 8, 481 (2013).

  26. 26.

    S.S. Naik and V.R. Reddy, Adv. Mat. Lett. 3, 188 (2012).

  27. 27.

    A. Tataroğlu and F.Z. Pür, Phys. Scr. 88, 015801 (2013).

  28. 28.

    R.K. Gupta, K. Ghosh, and P.K. Kahol, Phys. E 41, 876 (2009).

  29. 29.

    K. Moraki, S. Bengi, S. Zeyrek, M.M. Bülbül, and Ş. Altındal, J. Mater. Sci. 28, 3987 (2017).

  30. 30.

    A. Tataroğlu and S. Altındal, J. Alloys Compd. 479, 893 (2009).

  31. 31.

    E.H. Nicollian and J.R. Brews, MOS Physics and Technology (New York: Wiley, 1982).

  32. 32.

    A. Buyukbas, A. Tataroglu, and M. Balbasi, J. Nanoelectron. Optoelectron. 10, 675 (2015).

  33. 33.

    R. Padma, K. Sreenu, and V.R. Reddy, J. Alloys Compd. 695, 2587 (2017).

  34. 34.

    B.A. Gozeh, A. Karabulut, A. Yildiz, and F. Yakuphanoglu, J. Alloys Compd. 732, 16 (2018).

  35. 35.

    E. Kadri, M. Khlifi, M. Krichen, K. Khirouni, and A. Zouari, Opt. Quant. Electron. 49, 13 (2017).

  36. 36.

    Z. Rebaoui, W.B. Bouiajra, M.A. Abid, A. Saidane, D. Jammel, M. Henini, and J.F. Felix, Microelectron. Eng. 171, 11 (2017).

  37. 37.

    S. Hlali, A. Farji, N. Hizem, L. Militaru, A. Kalboussi, and A. Souifi, J. Alloys Compd. 713, 194 (2017).

  38. 38.

    M.S.P. Reddy, P.T. Puneetha, Y.-W. Lee, S.-H. Jeong, and C. Park, Poly. Testing 59, 107 (2017).

  39. 39.

    E.H. Nicollian and A. Goetzberger, Bell Syst. Tech. J. 46, 1055 (1967).

  40. 40.

    S. Mahato and J. Puigdollers, Phys. B Phys. Condens. Matter 530, 327 (2018).

Download references

Acknowledgments

This study was supported by Scientific Project Unit of Fırat University under Project No.: MF.16.79. Also, this research was supported by the Research Center for Advanced Materials Science at King Khalid University through a Grant RCAMS/ KKU/007-18. Authors want to acknowledge them for their support.

Author information

Correspondence to M. Soylu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dere, A., TataroŸğlu, A., Al-Sehemi, A.G. et al. A Temperature Sensor Based on Al/p-Si/CuCdO2/Al Diode for Low Temperature Applications. Journal of Elec Materi (2020). https://doi.org/10.1007/s11664-020-07989-z

Download citation

Keywords

  • Schottky diodes
  • temperature sensing
  • delafossite oxides
  • temperature dependence
  • current
  • capacitance