Skip to main content
Log in

High-Gain Ultraviolet Avalanche Photodiodes Using a ZnSe-Based Organic–Inorganic Hybrid Structure

  • Topical Collection: 19th International Conference on II-VI Compounds
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We have developed high-gain and highly sensitive ZnSe-based organic–inorganic hybrid ultraviolet avalanche photodiodes (UV-APDs). The inorganic ZnSe-based wafers (i-ZnSSe active layer/n-ZnSSe) were grown by molecular beam epitaxy (MBE) on n-type GaAs substrates. The inorganic UV-transparent conducting polymer window layers of poly 3,4-ethylenedioxythiophene:poly-styrenesulfonate (PEDOT:PSS) were formed by spin-coating and a photolithography technique instead of the inkjet printing technique, which we previously reported. We have obtained a thin uniform window layer with a mesa-shaped edge by an optimized photolithography process. The leakage current before the breakdown voltage was suppressed to < 10−10 A/mm2, which is lower than that of the APD device fabricated by inkjet printing. The maximum external quantum efficiency was improved to ηmax = 70% (λ = 340 nm) using the photolithography technique compared with the inkjet printing (ηmax = 50%). The maximum responsivity was improved from 3 A/W to 10 A/W. The maximum multiplication factor was improved from M = 90 to M = 3100.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Ogino, A. Yoshikawa, M. Niki, K. Kamada, and T. Fukuda, J. Cryst. Growth 292, 239 (2006).

    Article  CAS  Google Scholar 

  2. J.B. Limb, D. Yoo, J.H. Ryou, W. Lee, S.C. Shen, R.D. Dupuis, M.L. Reed, C.J. Collins, M. Wraback, D. Hanser, E. Preble, N.M. Williams, and K. Evans, Appl. Phys. Lett. 89, 011112 (2006).

    Article  Google Scholar 

  3. Z. Vashaei, E. Cicek, C. Bayram, R. McClintok, and M. Razeghi, Appl. Phys. Lett. 96, 201908 (2010).

    Article  Google Scholar 

  4. A.K. Sood, J.W. Zeller, and Y.R. Puri, International Journal of Engineering Research and Technology. 10, 129 (2017).

    CAS  Google Scholar 

  5. Q. Cai, Q. Li, M. Li, Y. Tang, J. Wang, J. Xue, D. Chen, H. Lu, R. Zhang, and Y. Zheng, IEEE Photonics J. 11, 6801507 (2019).

    Google Scholar 

  6. X.G. Bai, X.Y. Guo, D.C. Mcintosh, H.D. Liu, and J.C. Campbell, IEEE J. Quantum Electron. 43, 1159 (2007).

    Article  CAS  Google Scholar 

  7. H. Zhu, X. Chen, J. Cai, and Z. Wu, Solid State Electron. 53, 7 (2009).

    Article  CAS  Google Scholar 

  8. H.D. Liu, D. Mcintosh, X.G. Bai, H.P. Pan, M.G. Liu, J.C. Campbell, and H.Y. Cha, IEEE Photonics Technol. Lett. 20, 1551 (2008).

    Article  CAS  Google Scholar 

  9. J. Kou, K.K. Tian, C. Chu, Y. Zhang, X. Zhou, Z. Feng, and Z.H. Zhang, Nanoscale Res. Lett. 14, 396 (2019).

    Article  CAS  Google Scholar 

  10. H. Ishikura, T. Abe, N. Fukuda, H. Kasada, and K. Ando, Appl. Phys. Lett. 76, 1069 (2000).

    Article  CAS  Google Scholar 

  11. H. Ishikura, Y. Fukunaga, T. Kubota, H. Maeta, M. Adachi, T. Abe, H. Kasada, and K. Ando, Phys. Status Sollidi B 229, 1085 (2002).

    Article  CAS  Google Scholar 

  12. T. Abe, K. Ando, K. Ikumi, H. Maeta, J. Naruse, K. Miki, A. Ehara, and H. Kasada, Jpn. J. Appl. Phys. 44, L508 (2005).

    Article  CAS  Google Scholar 

  13. Y. Inagaki, M. Ebisu, M. Ohtsuki, N. Ayuni, T. Shimizu, T. Abe, H. Kasada, and K. Ando, Phys. Status Solidi C 9, 1852 (2012).

    Article  CAS  Google Scholar 

  14. J. Yu, C.X. Shan, X.M. Huang, X.W. Zhang, S.P. Wang, and D.Z. Shen, J. Phys. D Appl. Phys. 46, 305105 (2013).

    Article  Google Scholar 

  15. B. Qiao, Z. Zhang, X. Xie, B. Li, K. Li, X. Chen, H. Zhao, K. Liu, L. Liu, and D. Shen, J. Phys. Chem. C 123, 18516 (2019).

    Article  CAS  Google Scholar 

  16. N. Matsumura, M. Tsubokura, J. Saraie, and Y. Yodogawa, J. Cryst. Growth 86, 311 (1998).

    Article  Google Scholar 

  17. T. Abe, N. Ikadatsu, R. Inoue, T. Fujimoto, K. Tanaka, A. Tazue, Y. Inagaki, M. Ebisu, H. Kasada, and K. Ando, Phys. Status Sollidi C 11, 1300 (2014).

    Article  CAS  Google Scholar 

  18. R. Inoue, T. Abe, T. Fujimoto, N. Ikadatsu, K. Tanaka, S. Uchida, A. Tazue, H. Kasada, K. Ando, and K. Ichino, Appl. Phys. Express 8, 022101 (2015).

    Article  Google Scholar 

  19. T. Abe, R. Inoue, T. Fujimoto, K. Tanaka, S. Uchida, H. Kasada, K. Ando, and K. Ichino, Phys. Status Solidi C 13, 677 (2016).

    Article  CAS  Google Scholar 

  20. M. Nakano, T. Makino, A. Tsukazaki, K. Ueno, A. Ohtomo, T. Fukumura, H. Yuji, S. Akasaka, K. Tamura, K. Nakahara, T. Tanabe, A. Kamisawa, and M. Kawasaki, Appl. Phys. Lett. 93, 123309 (2008).

    Article  Google Scholar 

  21. J.T. Zettler, K. Stahrenberg, W. Richter, H. Wenisch, B. Jobst, and D. Hommel, J. Vac. Sci. Thechnol. 14, 2757 (1996).

    Article  CAS  Google Scholar 

  22. L. Daweritz and R. Hey, Surf. Sci. 236, 15 (1988).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomoki Abe.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ichikawa, Y., Tanaka, K., Nakagawa, K. et al. High-Gain Ultraviolet Avalanche Photodiodes Using a ZnSe-Based Organic–Inorganic Hybrid Structure. J. Electron. Mater. 49, 4589–4593 (2020). https://doi.org/10.1007/s11664-020-07970-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-07970-w

Keywords

Navigation