Hybrid SnO2@NiCo2O4 Heterostructure With Improved Capacitive Performance

  • Yongmei He
  • Weichao Han
  • Lijun LiEmail author


In this paper, a two-step, solution-based method and post-calcination were employed to coat NiCo2O4 nanowires arrays onto dense SnO2 thin films which were grown on Ni foam substrates. Owing to the low charge transfer resistance and good electronic conductivity of the SnO2 thin films, the specific SnO2 thin films were used as the supporting backbone. X-ray diffraction and elemental mapping were applied to demonstrate the existence of Ni, Co, O, Sn while the hierarchical structure and morphology of SnO2@NiCo2O4 were analyzed by field emission scanning electron microscopy. The electrochemical performance of SnO2@NiCo2O4 was also investigated in a three-electrode system. The as-formed SnO2@NiCo2O4 electrode had outstanding electrochemical performance (1.49 F cm−2 at 1 mA cm−2) and good cycling stability (retaining 86% after 2000 cycles). On the one hand, the excellent pseudocapacitive performance was mainly due to the addition of the SnO2 thin films, which served as a conducting oxide thin film to provide low charge transfer resistance. On the other hand, the SnO2 thin films offered a more effective place for the growth of NiCo2O4 nanowires arrays than the bare Ni foam substrates. The perfect electrochemical performance of these hybrid nanomaterials showed their potential in supercapacitor electrodes.


Heterostructure binderless supercapacitor SnO2@NiCo2O4 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was financially supported by the National Natural Science Foundation of China (No. 21266018, 21566030), Science and technology projects of Science and Technology Department of Inner Mongolia Autonomous Region, P. R. China (Nos. 20110401 and 20130409), the Natural Science Foundation of Inner Mongolia, P. R. China (No. 2010MS0218), Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region (No. NJYT-15-A04), and Ministry of Science and Technology China-South Africa Joint Research Program (No.CS08-L15)

Supplementary material

11664_2020_7949_MOESM1_ESM.pdf (656 kb)
Supplementary material 1 (PDF 656 kb)


  1. 1.
    J. Yan, Q. Wang, T. Wei, and Z.J. Fan, Adv. Energy Mater. 4, 1 (2013).Google Scholar
  2. 2.
    G. Wang, L. Zhang, and J. Zhang, Chem. Soc. Rev. 41, 797 (2012).CrossRefGoogle Scholar
  3. 3.
    M. Yang and H. Xia, Sci. China: Technol. Sci 58, 1851 (2015).CrossRefGoogle Scholar
  4. 4.
    C. Zhong, Y.D. Deng, W.B. Hu, J.L. Qiao, L. Zhang, and J.J. Zhang, Chem. Soc. Rev. 21, 1 (2015).Google Scholar
  5. 5.
    A.L.M. Reddy, S.R. Gowda, M.M. Shaijumon, and P.M. Ajayan, Adv. Mater. 24, 5045 (2012).CrossRefGoogle Scholar
  6. 6.
    Z. Chen, D. Pan, Z. Li, Z. Jiao, M. Wu, C.H. Shek, C.M. Wu, and J.K. Lai, Chem. Rev. 114, 7442 (2014).CrossRefGoogle Scholar
  7. 7.
    X. Li and B. Wei, Nano. Energy 2, 159 (2013).CrossRefGoogle Scholar
  8. 8.
    G. Yu, X. Xie, L. Pan, Z. Bao, and Y. Cui, Nano. Energy 2, 213 (2013).CrossRefGoogle Scholar
  9. 9.
    Z. Yu, L. Tetard, L. Zhai, and J. Thomas, Energy Environ. Sci. 8, 702 (2015).CrossRefGoogle Scholar
  10. 10.
    H. Wang, W. Zhang, H. Chen, and W. Zheng, Sci. China: Technol. Sci 58, 1779 (2015).CrossRefGoogle Scholar
  11. 11.
    H. Jiang, J. Ma, and C. Li, Adv. Mater. 24, 4197 (2012).CrossRefGoogle Scholar
  12. 12.
    M. Toupin, T. Brousse, and D. Bélanger, Chem. Mater. 14, 3946 (2002).CrossRefGoogle Scholar
  13. 13.
    J.Y. Lee, K. Liang, K.H. An, and Y.H. Lee, Synth. Met. 150, 153 (2005).CrossRefGoogle Scholar
  14. 14.
    S. Passerini, J.J. Ressler, D.B. Le, B.B. Owens, and W.H. Smyrl, Electrochim. Acta 44, 2209 (1999).CrossRefGoogle Scholar
  15. 15.
    M. Sathiya, A.S. Prakash, K. Ramesha, J.-M. Tarascon, and A.K. Shukla, J. Am. Chem. Soc. 133, 1629 (2011).CrossRefGoogle Scholar
  16. 16.
    Y. Zhang, H. Feng, X. Wu, L. Wang, A. Zhang, T. Xia, H. Dong, X. Li, and L. Zhang, Int. J. Hydrogen Energy 34, 4889 (2009).CrossRefGoogle Scholar
  17. 17.
    G.-Y. Yu, W.-X. Chen, Y.-F. Zheng, J. Zhao, X. Li, and Z.-D. Xu, Mater. Lett. 60, 2453 (2006).CrossRefGoogle Scholar
  18. 18.
    G. Gao, H.B. Wu, S. Ding, and X.W. Lou, Small 11, 432 (2015).CrossRefGoogle Scholar
  19. 19.
    S. Hou, G. Zhang, W. Zeng, J. Zhu, F. Gong, F. Li, and H. Duan, A.C.S. Appl. Mater. Interfaces 6, 13564 (2014).CrossRefGoogle Scholar
  20. 20.
    X. Sun, Q. Li, Y. Lu, and Y. Mao, Chem. Commun. 49, 4456 (2013).CrossRefGoogle Scholar
  21. 21.
    Y. Liu, Y. Jiao, Z.L. Zhang, F.Y. Qu, A. Umar, and X. Wu, A.C.S. Appl. Mater. Interfaces. 6, 2174 (2014).CrossRefGoogle Scholar
  22. 22.
    Y. Liu, Y. Jiao, B. Yin, S. Zhang, F.Y. Qu, and X. Wu, J. Mater. Chem. A 3, 3676 (2015).CrossRefGoogle Scholar
  23. 23.
    J. Yang, M. Ma, C. Sun, Y. Zhang, W. Huang, and X. Dong, J. Mater. Chem. A 3, 1258 (2015).CrossRefGoogle Scholar
  24. 24.
    L. Zhang, H.B. Wu, B. Liu, and X.W. Lou, Energy Environ. Sci. 7, 1013 (2014).CrossRefGoogle Scholar
  25. 25.
    X.W. Lou, C.M. Li, and L.A. Archer, Adv. Mater. 21, 2536 (2009).CrossRefGoogle Scholar
  26. 26.
    J.S. Chen and X.W. Lou, Small 9, 1877 (2013).CrossRefGoogle Scholar
  27. 27.
    H.K. Wang and A.L. Rogach, Chem. Mater. 26, 123 (2014).CrossRefGoogle Scholar
  28. 28.
    X. Meng, M. Zhou, X. Li, J. Yao, F. Liu, H. He, P. Xiao, and Y. Zhang, Electrochim. Acta 109, 20 (2013).CrossRefGoogle Scholar
  29. 29.
    S. Ding, D. Luan, F.Y. Boey, J.S. Chen, and X.W. Lou, Chem. Commun. 47, 7155 (2011).CrossRefGoogle Scholar
  30. 30.
    X.W. Lou, Y. Wang, C. Yuan, J.Y. Lee, and L.A. Archer, Adv. Mater. 18, 2325 (2006).CrossRefGoogle Scholar
  31. 31.
    J.Y. Kim, J.S. Kang, J.Y. Shin, J. Kim, S.J. Han, J. Park, Y.S. Min, M.J. Ko, and Y.E. Sung, Nanoscale 7, 8368 (2015).CrossRefGoogle Scholar
  32. 32.
    Y. Luo, D. Kong, J. Luo, S. Chen, D. Zhang, K. Qiu, X. Qi, H. Zhang, C.M. Li, and T. Yu, RSC. Adv. 3, 14413 (2013).CrossRefGoogle Scholar
  33. 33.
    K. Karthikeyan, S. Amaresh, D. Kalpana, R.K. Selvan, and Y.S. Lee, J. Phys. Chem. Solids 73, 363 (2012).CrossRefGoogle Scholar
  34. 34.
    L. Li, Z.A. Hu, N. An, Y.Y. Yang, Z.M. Li, and H.Y. Wu, J. Phys. Chem. C 118, 22865 (2014).CrossRefGoogle Scholar
  35. 35.
    S.N. Pusawale, P.R. Deshmukh, and C.D. Lokhande, Appl. Surf. Sci. 257, 9498 (2011).CrossRefGoogle Scholar
  36. 36.
    Y. Zhang, Z. Hu, Y. Liang, Y. Yang, N. An, Z. Li, and H. Wu, J. Mater. Chem. A 3, 15057 (2015).CrossRefGoogle Scholar
  37. 37.
    D.-W. Choi and J.-S. Park, Surf. Coat. Technol. 259, 238 (2014).CrossRefGoogle Scholar
  38. 38.
    F. Fang, Y. Zhang, X. Wu, Q. Shao, and Z. Xie, Mate. Res. Bull. 68, 240 (2015).CrossRefGoogle Scholar
  39. 39.
    H. Chen, J. Jiang, L. Zhang, T. Qi, D. Xia, H. Wan, and J. Power, Sources 248, 28 (2014).CrossRefGoogle Scholar
  40. 40.
    Q. Zhou, J. Xing, Y. Gao, X. Lv, Y. He, Z. Guo, and Y. Li, ACS Appl. Mater. Interfaces. 6, 11394 (2014).CrossRefGoogle Scholar
  41. 41.
    L. Shen, L. Yu, X.Y. Yu, X. Zhang, and X.W. Lou, Angew. Chem. 54, 1868 (2015).CrossRefGoogle Scholar
  42. 42.
    R. Zou, M.F. Yuen, Z. Zhang, J. Hu, and W. Zhang, J. Mater. Chem. A 3, 1717 (2015).CrossRefGoogle Scholar
  43. 43.
    J. Xiao and S. Yang, RSC. Adv. 1, 588 (2011).CrossRefGoogle Scholar
  44. 44.
    X.Y. Liu, Y.Q. Zhang, X.H. Xia, S.J. Shi, Y. Lu, X.L. Wang, C.D. Gu, J.P. Tu, and J. Power, Sources 239, 157 (2013).CrossRefGoogle Scholar
  45. 45.
    X. Wang, X. Han, M. Lim, N. Singh, C.L. Gan, M. Jan, and P.S. Lee, J. Phys. Chem. C 116, 12448 (2012).CrossRefGoogle Scholar
  46. 46.
    H.B. Wu, H. Pang, and X.W. Lou, Energy Environ. Sci. 6, 3619 (2013).CrossRefGoogle Scholar
  47. 47.
    R.R. Salunkhe, K. Jang, S. Lee, and H. Ahn, RSC Adv. 2, 3190 (2012).CrossRefGoogle Scholar
  48. 48.
    Q.F. Wang, X.F. Wang, B. Liu, G. Yu, X.J. Hou, D. Chen, and G.Z. Shen, J. Mater. Chem. A 1, 2468 (2013).CrossRefGoogle Scholar
  49. 49.
    W.W. Zhou, D.Z. Kong, X.T. Jia, C.Y. Ding, C.W. Cheng, and G.W. Wen, J. Mater. Chem. A 2, 6310 (2014).CrossRefGoogle Scholar
  50. 50.
    Z.H. Yang, X. Zhu, K. Wang, G. Ma, H. Cheng, and F.F. Xu, Appl. Surf. Sci. 347, 690 (2015).CrossRefGoogle Scholar
  51. 51.
    J. Zhang, H. Gao, M.Y. Zhang, Q. Yang, and H.X. Chuo, Appl. Surf. Sci. 349, 870 (2015).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2020

Authors and Affiliations

  1. 1.College of Chemical EngineeringInner Mongolia University of TechnologyHohhotPeople’s Republic of China

Personalised recommendations