Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Effects of Calcination Temperature on Magnetic and Microwave Absorption Properties of SrFe12O19/Ni0.6Zn0.4Fe2O4 Composites

  • 15 Accesses

Abstract

SrFe12O19/Ni0.6Zn0.4Fe2O4 powders were prepared by the one-pot solution combustion method. The effect of calcination temperatures (700°C and 800°C) on phase, structure, microstructure and magnetic properties of SrFe12O19-x Ni0.6Zn0.4Fe2O4 (x = 0 wt.%, 10 wt.%, 20 wt.% and 30 wt.%) composites were investigated by x-ray diffractometry, scanning electron microscopy and vibrating sample magnetometry techniques. Strontium hexaferrite and spinel ferrite phases were formed through calcination at 800°C together with some α-Fe2O3 phase, while spinel ferrite was mainly crystallized at 700°C. The saturation magnetization slightly increased from 38 emu/g to 42 emu/g with the addition of 10 wt.% of Ni0.6Zn0.4Fe2O4 and then decreased to 36 emu/g at a calcination temperature of 800°C. The microwave absorption measurements in X-band (8–12 GHz) showed a minimum reflection loss of − 14.5 dB at 9.5 GHz for SrFe12O19-10 wt.% Ni0.6Zn0.4Fe2O4 composite synthesized at 800°C.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    A. Goldman, Modem Ferrite Technology, 2nd ed. (Pittsburgh: Springer, 2006).

  2. 2.

    K.J. Vinoy and R.M. Jha, Radar Absorbing Materials, 1st ed. (New York: Springer, 1996).

  3. 3.

    R. Valenzuela, Magnetic Ceramics (Cambridge: Cambridge University Press, 1994).

  4. 4.

    R.C. Pullar, Prog. Mater. Sci. 57, 1191 (2012).

  5. 5.

    G.C.P. Leite, E.F. Chagas, R. Pereira, R.J. Prado, A.J. Terezo, M. Alzamora, and E. Baggio-Saitovitch, J. Magn. Magn. Mater. 324, 2711 (2012).

  6. 6.

    X. Shen, F. Song, J. Xiang, M. Liu, Y. Zhu, and Y. Wang, J. Am. Ceram. Soc. 95, 3863 (2012).

  7. 7.

    M.A. Radmanesh and S.A. Seyyed Ebrahimi, J. Magn. Magn. Mater. 324, 3094 (2012).

  8. 8.

    S.M.A. Radmanesh and S.A. Seyyed Ebrahimi, J. Supercond. Novel Magn. 26, 2411 (2013).

  9. 9.

    D. Roy and P.S. Anil Kumar, J. Appl. Phys. 106, 073902 (2009).

  10. 10.

    V. Sharma, S. Kumari, and B.K. Kuanr, J. Alloys Compd. 736, 266 (2018).

  11. 11.

    S.R. Saeedi Afshar, M. Hasheminiasari, and S.M. Masoudpanah, J. Magn. Magn. Mater. 466, 1 (2018).

  12. 12.

    P. Jenuš, M. Topole, P. McGuiness, C. Granados-Miralles, M. Stingaciu, and M. Christensen, Spomenka Kobe Kristina ŽuŽek RoŽman 99, 1927 (2016).

  13. 13.

    H. Nikmanesh, M. Moradi, P. Kameli, and G.H. Bordbar, J. Electron. Mater. 46, 5933 (2017).

  14. 14.

    L. Pan, D. Cao, P. Jing, J. Wang, and Q. Liu, J. Nanoscale Res. Lett. 10, 131 (2015).

  15. 15.

    C. Granados-Miralles, M. Saura-Múzquiz, H.L. Andersen, A. Quesada, J.V. Ahlburg, A. Dippel, E. Canévet, and M. Christensen, ACS Appl. Nano Mater. 1, 3693 (2018).

  16. 16.

    P. Veverka, E. Pollert, K. Závěta, S. Vasseur, and E. Duguet, Nanotechnology 19, 215705 (2008).

  17. 17.

    A. Varma, A.S. Mukasyan, A.S. Rogachev, and K.V. Manukyan, Chem. Rev. 116, 14493 (2016).

  18. 18.

    H.H. Nersisyan, J.H. Lee, J.-R. Ding, K.-S. Kim, K.V. Manukyan, and A.S. Mukasyan, Prog. Energy Combust. Sci. 63, 79 (2017).

  19. 19.

    F. Li, J. Ran, M. Jaroniec, and S.Z. Qiao, Nanoscale 7, 17590 (2015).

  20. 20.

    S.M. Masoudpanah and S.A. Seyyed Ebrahimi, J. Magn. Magn. Mater. 324, 2239 (2012).

  21. 21.

    Q. Han, X. Meng, and C. Lu, J. Alloys Compd. 768, 742 (2018).

  22. 22.

    S. Hazra, B.K. Ghosh, H.R. Joshi, M.K. Patra, R.K. Jani, S.R. Vadera, and N.N. Ghosh, RSC Adv. 4, 45715 (2014).

  23. 23.

    X. Meng, Q. Han, Y. Sun, and Y. Liu, Ceram. Int. 45, 2504 (2019).

  24. 24.

    Y. Wang, Y. Huang, Q. Wang, Q. He, and M. Zong, J. Sol. Gel. Sci. Technol. 67, 344 (2013).

  25. 25.

    Z. Han, D. Li, M. Tong, X. Wei, R. Skomski, W. Liu, Z.D. Zhang, and D.J. Sellmyer, J. Appl. Phys. 107, 09A929 (2010).

  26. 26.

    E. Kiani, A.S.H. Rozatian, and M.H. Yousefi, J. Mater. Sci. Mater. Electron. 24, 2485 (2013).

  27. 27.

    S. Kanagesan, M. Hashim, S. Jesurani, T. Kalaivani, I. Ismail, and C.S. Ahmod, J. Mater. Sci. Mater. Electron. 24, 3881 (2013).

  28. 28.

    S.M. Masoudpanah, S.A. Seyyed Ebrahimi, and C.K. Ong, J. Magn. Magn. Mater. 324, 2654 (2012).

  29. 29.

    A. Rahman and R. Jayaganthan, Surf. Eng. 33, 810 (2017).

  30. 30.

    N.A. Spaldin, Magnetic Materials: Fundamentals and Applications (Cambridge: Cambridge University Press, 2010).

  31. 31.

    F. Liu, Y. Hou, and S. Gao, Chem. Soc. Rev. 43, 8098 (2014).

  32. 32.

    Y. Deng, G.P. Zhao, L. Chen, H.W. Zhang, and X.L. Zhou, J. Magn. Magn. Mater. 323, 535 (2011).

  33. 33.

    S. Torkian, A. Ghasemi, and R.S. Razavi, J. Magn. Magn. Mater. 416, 408 (2016).

  34. 34.

    D. Roy, C. Shivakumara, and P.S. Anil Kumar, J. Magn. Magn. Mater. 321, L11 (2009).

  35. 35.

    Z.W. Li, L. Chen, and C.K. Ong, J. Appl. Phys. 94, 5918 (2003).

  36. 36.

    M. Jazirehpour and S.A. Seyyed Ebrahimi, J. Alloys Compd. 638, 188 (2015).

  37. 37.

    X. Zhao, Z. Zhang, L. Wang, K. Xi, Q. Cao, D. Wang, Y. Yang, and Y. Du, Sci. Rep. 3, 3421 (2013).

Download references

Author information

Correspondence to M. Hasheminiasari.

Ethics declarations

Conflicts of interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Saeedi Afshar, S.R., Masoudpanah, S.M. & Hasheminiasari, M. Effects of Calcination Temperature on Magnetic and Microwave Absorption Properties of SrFe12O19/Ni0.6Zn0.4Fe2O4 Composites. Journal of Elec Materi 49, 1742–1748 (2020). https://doi.org/10.1007/s11664-020-07943-z

Download citation

Keywords

  • SrFe12O19/Ni0.6Zn0.4Fe2O4 composite
  • solution combustion synthesis
  • calcination temperature
  • magnetic properties
  • microwave absorption