A New Ag/AgBr/LaAlO3 Plasmonic Composite: Synthesis, Characterization, and Visible-Light Driven Photocatalytic Activity

  • Perala Venkataswamy
  • Mannepalli Sudheera
  • Kammara Vaishnavi
  • Kadari Ramaswamy
  • Gundeboina Ravi
  • Muga VithalEmail author


In recent years, fabricating the visible-light induced photocatalysts based on the concept of plasmonic photocatalysis provides an efficient way to reduce environmental pollution. Accordingly, the present investigation has been carried out to develop such materials based on lanthanum aluminate (LaAlO3; LAO) and Ag/AgBr. The Ag/AgBr/LAO composite is prepared by deposition of metallic Ag nanoparticles onto the pre-prepared AgBr/LAO heterostructure by visible-light photo-reduction. The characteristic properties of synthesized catalysts were investigated by using a variety of techniques such as XRD, N2 adsorption–desorption, FESEM/EDX/EDS mapping, TEM-HRTEM, UV–Vis DRS, FT-IR, XPS, and PL measurements. The photocatalytic degradation of methylene blue (MB) was used as a probe reaction to evaluate their photocatalytic activity under visible-light irradiation. Because of the higher surface area with vast mesoporous nature, enhanced visible light absorption, and more efficient charge separation after the deposition of Ag/AgBr, the composite Ag/AgBr/LAO showed enhanced photocatalytic activity compared with pristine LAO. The recycling experiment revealed excellent stability (up to five successive cycles) of Ag/AgBr/LAO composite. Furthermore, a photocatalytic mechanism is proposed for the degradation of MB over Ag/AgBr/LAO composite. The composite Ag/AgBr/LAO can be used as a promising catalyst for environmental remediation.


LaAlO3 Ag/AgBr nanocomposite plasmonic Ag nanoparticles charge separation methylene blue 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors would like to acknowledge the Department of Science and Technology-Science and Engineering Research Board (DST-SERB) of India for financially supporting this research under the Extramural Research (renamed as Core Research Grant) [File No: EMR/2016/001533]. MV thanks to UGC, New Delhi, India, for the award of BSR Faculty Fellowship [F.18–1/2011(BSR)].

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this manuscript.

Supplementary material

11664_2019_7938_MOESM1_ESM.doc (566 kb)
Detailed information about the unit cell parameters, FT-IR, and PL spectra of as-synthesized catalysts are provided (DOC 567 kb)


  1. 1.
    T.M. Elmorsi, J. Environ. Prot. 2, 817 (2011).CrossRefGoogle Scholar
  2. 2.
    J. Madhavan, F. Grieser, and M.A. Kumar, Ultrason. Sonochem. 17, 338 (2010).CrossRefGoogle Scholar
  3. 3.
    A.H. Mahvi, M. Ghanbarian, S. Nasseri, and A. Khairi, Desalination 239, 309 (2009).CrossRefGoogle Scholar
  4. 4.
    C.C. Lee, L.Y. Jiang, Y.L. Kuo, C.Y. Hsieh, C.S. Chen, and C.J. Tien, Chemosphere 91, 904 (2013).CrossRefGoogle Scholar
  5. 5.
    Y. Xia, J. Su, and Z. He, J. Electron. Mater. 48, 3890 (2019).CrossRefGoogle Scholar
  6. 6.
    A. Singh, P. Khare, S. Verma, A. Bhati, A.K. Sonker, K.M. Tripathi, and S.K. Sonkar, ACS Sustain. Chem. Eng. 5, 8860 (2017).CrossRefGoogle Scholar
  7. 7.
    J. Huang, H. Ren, X. Liu, X. Li, and J.-J. Shim, Superlattices Microstruct. 81, 16 (2015).CrossRefGoogle Scholar
  8. 8.
    L. Karimi, S. Zohoori, and M.E. Yazdanshenas, J. Saudi Chem. Soc. 18, 581 (2014).CrossRefGoogle Scholar
  9. 9.
    T.K. Truong, T.V. Doan, H.H. Tran, H.V. Le, V.Q. Lam, H.N. Tran, T.M. Cao, and V.V. Pham, J. Electron. Mater. 48, 7378 (2019).CrossRefGoogle Scholar
  10. 10.
    S. Kumar, A. Kumar, A. Bahuguna, V. Sharma, and V. Krishnan, Beilstein J. Nanotechnol. 8, 1571 (2017).CrossRefGoogle Scholar
  11. 11.
    Ewelina Grabowska, Appl. Catal. B 186, 97 (2016).CrossRefGoogle Scholar
  12. 12.
    J. Ding, J. Bao, S. Sun, Z. Luo, and C. Gao, J. Comb. Chem. 11, 523 (2009).CrossRefGoogle Scholar
  13. 13.
    R. Maity, M.S. Sheikh, A. Dutta, and T.P. Sinha, J. Electron. Mater. 48, 4856 (2019).CrossRefGoogle Scholar
  14. 14.
    X. Zhou, Y. Qiu, G. Yang, X. Ning, L. Zhan, L. Ma, X. Xu, and J. Lu, J. Taiwan Inst. Chem. Eng. 100, 194 (2019).CrossRefGoogle Scholar
  15. 15.
    S. Thirumalairajan, K. Girija, V.R. Mastelaro, and N. Ponpandian, New J. Chem. 38, 5480 (2014).CrossRefGoogle Scholar
  16. 16.
    X.-J. Wang, H.-Y. Shen, H.-Y. Tian, and Q.-H. Yang, Adv. Mater. Res. 465, 37 (2012).CrossRefGoogle Scholar
  17. 17.
    M. Ismael and M. Wark, Catalysts 9, 342 (2019).CrossRefGoogle Scholar
  18. 18.
    M. Sun, Y. Jiang, F. Li, M. Xia, B. Xue, and D. Liu, Mater. Trans. 51, 2208 (2010).CrossRefGoogle Scholar
  19. 19.
    X. Ni, H. Li, and G. Liu, J. Mol. Catal. A Chem. 232, 89 (2005).CrossRefGoogle Scholar
  20. 20.
    M.R. Benam, N. Abdoshahi, and M.M. Sarmazdeh, Comput. Mater. Sci. 84, 360 (2014).CrossRefGoogle Scholar
  21. 21.
    V.V. Kharton, F.M.B. Marques, and A. Atkinson, Solid State Ionics 174, 135 (2004).CrossRefGoogle Scholar
  22. 22.
    R.W. Simon, C.E. Platt, A.E. Lee, G.S. Lee, K.P. Daly, M.S. Wire, J.A. Luine, and M. Urbanik, Appl. Phys. Lett. 54, 2677 (1988).CrossRefGoogle Scholar
  23. 23.
    R. Spinicci, P. Marini, S. De Rossi, M. Faticanti, and P. Porta, J. Mol. Catal. A Chem. 176, 253 (2001).CrossRefGoogle Scholar
  24. 24.
    T. Tagawa and H. Imai, J. Chem. Soc. Faraday Trans. 1. Phys. Chem. Condens. Phases 84, 923 (1988).Google Scholar
  25. 25.
    H. Wang, L. Zhang, C. Hu, X. Wang, L. Lyu, and G. Sheng, Chem. Eng. J. 332, 572 (2018).CrossRefGoogle Scholar
  26. 26.
    R. Saravanan, K.M. Mansoob, V.K. Gupta, E. Mosquera, F. Gracia, V. Narayanan, and A. Stephen, J. Colloid Interface Sci. 452, 126 (2015).CrossRefGoogle Scholar
  27. 27.
    Q. Zhang, Y. Huang, L. Xu, J.-J. Cao, W. Ho, and S.C. Lee, ACS Appl. Mater. Interfaces 8, 4165 (2016).CrossRefGoogle Scholar
  28. 28.
    H. Guo, C.-G. Niu, D.-W. Huang, N. Tang, C. Liang, L. Zhang, X.-J. Wen, Y. Yang, W.-J. Wang, and G.-M. Zeng, Chem. Eng. J. 360, 349 (2019).CrossRefGoogle Scholar
  29. 29.
    Y. Bao and K. Chen, Nano-Micro Lett. 8, 182 (2016).CrossRefGoogle Scholar
  30. 30.
    Z. Song, P. Lin, Z. Ma, F. Wang, and G.S. Huang, J. Exp. Nanosci. 14, 56 (2019).CrossRefGoogle Scholar
  31. 31.
    H. Shen, H. Wei, Z. Pan, Y. Lu, and Y. Wang, Appl. Surf. Sci. 423, 403 (2017).CrossRefGoogle Scholar
  32. 32.
    P.V. Huan, P.D. Tam, and V.-H. Pham, J. Electron. Mater. 48, 5294 (2019).CrossRefGoogle Scholar
  33. 33.
    L. Shi, L. Liang, J. Ma, Y. Meng, S. Zhong, F. Wang, and J. Sun, Ceram. Int. 40, 3495 (2014).CrossRefGoogle Scholar
  34. 34.
    C.H.R. Paula, N.F. Andradeneto, L.M.P. Garcia, R.M. Nascimento, C.A. Paskocimas, M.R.D. Bomio, and F.V. Motta, J. Electron. Mater. 48, 3017 (2019).CrossRefGoogle Scholar
  35. 35.
    X.H. Vu, L.H. Phuoc, N.D. Dien, T.T.H. Pham, and L.D. Thanh, J. Electron. Mater. 48, 2978 (2019).CrossRefGoogle Scholar
  36. 36.
    P. Venkataswamy, D. Jampaiah, A.E. Kandjani, Y.M. Sabri, B.M. Reddy, and M. Vithal, Res. Chem. Intermed. 44, 2523 (2018).CrossRefGoogle Scholar
  37. 37.
    Q. Ma, H. Zhang, R. Guo, Y. Cui, X. Deng, X. Cheng, M. Xie, Q. Cheng, and B. Li, J. Taiwan Inst. Chem. Eng. 80, 176 (2017).CrossRefGoogle Scholar
  38. 38.
    K. Srinivasulu and M.V.S. Doss, Trans. Indian Ceram. Soc. 78, 13 (2019).CrossRefGoogle Scholar
  39. 39.
    V.N. Stathopoulos, T. Kuznetsova, O. Lapina, D. Khabibulin, P.K. Pandis, T. Krieger, Y. Chesalov, R. Gulyalev, V. Krivensov, T. Larina, and V. Sadykov, Mater. Chem. Phys. 207, 423 (2018).CrossRefGoogle Scholar
  40. 40.
    Z. Zhang, J. Yu, L. Ma, Y. Sun, P. Wang, T. Wang, and S. Peng, Spectrochim. Acta A Mol. Biomol. Spectrosc. 224, 117381 (2020).CrossRefGoogle Scholar
  41. 41.
    M. Zhang, Y. Chen, B. Chen, Y. Zhang, L. Lin, X. Han, P. Zou, G. Wang, J. Zeng, and M. Zhao, New J. Chem. 43, 5088 (2019).CrossRefGoogle Scholar
  42. 42.
    R. Cao, D. Ceng, P. Liu, X. Yu, S. Guo, and G. Zheng, Appl. Phys. A 122, 299 (2016).CrossRefGoogle Scholar
  43. 43.
    P. Ankoji and B. Hemalatha Rudramadevi, J. Mater. Sci. Mater. Electron. 30, 2750 (2019).CrossRefGoogle Scholar
  44. 44.
    C. Bai, J. Bi, J. Wu, Y. Xu, S. Wohlrab, Y. Han, and X. Zhang, Int. J. Hydrogen Energy 44, 21397 (2019).CrossRefGoogle Scholar
  45. 45.
    J. Hu, J. Men, Y. Liu, H. Huang, and T. Jiao, RSC Adv. 5, 54028 (2015).CrossRefGoogle Scholar
  46. 46.
    Z. Jiao, J. Zhang, Z. Liu, and Z. Ma, J. Photochem. Photobiol. A 371, 67 (2019).CrossRefGoogle Scholar
  47. 47.
    S.-F. Yang, C.-G. Niu, D.-W. Huang, H. Zhang, C. Liang, and G.-M. Zeng, Environ. Sci. Nano 4, 585 (2017).CrossRefGoogle Scholar
  48. 48.
    R.E. Adam, M. Pirhashemi, S. Elhag, X. Liu, H.-Y. Aziz, M. Willandera, and O. Nur, RSC Adv. 9, 8271 (2019).CrossRefGoogle Scholar
  49. 49.
    P. Venkataswamy, S. Manasa, G. Ravi, V. Radha, and M. Vithal, Catal. Lett. 149, 2332 (2019).CrossRefGoogle Scholar
  50. 50.
    M.-Y. Ding, D.-S. Meng, Y.-H. Tang, C.-B. Liu, and S.-L. Luo, Chem. Pap. 69, 1411 (2015).CrossRefGoogle Scholar
  51. 51.
    B. Chen, J. Yu, and X. Liang, Langmuir 27, 11654 (2011).CrossRefGoogle Scholar
  52. 52.
    J.C. Duran-Alvarez, M. Mendez-Galvan, L. Lartundo-Rojas, M. Rodriguez-Varela, D. Ramirez-Ortega, D. Guerrero-Araque, and R. Zanella, Top. Catal. 62, 1011 (2019).CrossRefGoogle Scholar
  53. 53.
    Y. Ao, L. Xu, P. Wang, C. Wang, and J. Hou, RSC Adv. 6, 19223 (2016).CrossRefGoogle Scholar
  54. 54.
    Q. Zhang, Y. Huang, L.F. Xu, J.J. Cao, W.K. Ho, and S.C. Lee, ACS Appl. Mater. Interfaces 8, 4165 (2016).CrossRefGoogle Scholar
  55. 55.
    X.Y. Pan, X.X. Chen, and Z.G. Yi, Phys. Chem. Chem. Phys. 18, 31400 (2016).CrossRefGoogle Scholar
  56. 56.
    A. Dhahri, K. Horchani-Naifer, A. Benedetti, F. Enrichi, M. Ferid, and P. Riello, Opt. Mater. 35, 1184 (2013).CrossRefGoogle Scholar
  57. 57.
    A.A. Ansari, R. Yadav, and S.B. Rai, RSC Adv. 6, 22074 (2016).CrossRefGoogle Scholar
  58. 58.
    J. Zhang, Z. Zhao, X. Wang, T. Yu, J. Guan, Z. Yu, Z. Li, and Z. Zou, J. Phys. Chem. C 114, 18396 (2010).CrossRefGoogle Scholar
  59. 59.
    H.Y. Yin, X.L. Wang, L. Wang, Q.L. Nie, Y. Zhang, Q.L. Yuan, and W.W. Wu, J. Alloys Compd. 657, 44 (2016).CrossRefGoogle Scholar
  60. 60.
    L. Bai, Q. Xu, and Z. Cai, J. Mater. Sci. Mater. Electron. 29, 17580 (2018).CrossRefGoogle Scholar
  61. 61.
    L. Tian, K. Sun, Y. Rui, W. Cui, and W. An, RSC Adv. 8, 29309 (2018).CrossRefGoogle Scholar
  62. 62.
    J. Chen, L. Dou, J. Li, B. Chen, J. Zhong, J. He, and R. Duan, Solid State Sci. 94, 106 (2019).CrossRefGoogle Scholar
  63. 63.
    P. Venkataswamy, Ch. Sudhakar Reddy, G. Ravi, G. Sadanandam, V. Naveen Kumar, and M. Vithal, Electron. Mater. Lett. 14, 446 (2018).CrossRefGoogle Scholar
  64. 64.
    T. Li, S. Luo, and L. Yang, J. Solid State Chem. 206, 308 (2013).CrossRefGoogle Scholar
  65. 65.
    X. Lv, Z. Hu, J. Ren, Y. Liu, Z. Wang, and Z.-Y. Yuan, Inorg. Chem. Front. 6, 74 (2019).CrossRefGoogle Scholar
  66. 66.
    M.-P. Mazhari and M. Hamadanian, J. Electron. Mater. 47, 7484 (2018).CrossRefGoogle Scholar
  67. 67.
    A. Lebedev, F. Anariba, X. Li, D.S.H. Leng, and P. Wu, Sol. Energy 178, 257 (2019).CrossRefGoogle Scholar
  68. 68.
    S. Jonjana, A. Phuruangrat, N. Ekthammathat, S. Thongtem, and T. Thongtem, J. Electron. Mater. 48, 4787 (2019).CrossRefGoogle Scholar
  69. 69.
    W. Li, Q. Chen, X. Lei, and S. Gong, RSC Adv. 9, 5100 (2019).CrossRefGoogle Scholar
  70. 70.
    Q. Zhu, W.-S. Wang, L. Lin, G.-Q. Gao, H.-L. Guo, H. Du, and A.-W. Xu, J. Phys. Chem. C 117, 5894 (2013).CrossRefGoogle Scholar
  71. 71.
    H. Cheng, B. Huang, P. Wang, Z. Wang, Z. Lou, J. Wang, X. Qin, X. Zhang, and Y. Dai, Chem. Commun. 47, 7054 (2011).CrossRefGoogle Scholar
  72. 72.
    T. Li, Y. He, H. Lin, J. Cai, L. Dong, X. Wang, M. Luo, L. Zhao, X. Yi, and W. Weng, Appl. Catal. B 138–139, 95 (2013).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2020

Authors and Affiliations

  • Perala Venkataswamy
    • 1
  • Mannepalli Sudheera
    • 2
  • Kammara Vaishnavi
    • 1
  • Kadari Ramaswamy
    • 1
    • 3
  • Gundeboina Ravi
    • 1
  • Muga Vithal
    • 1
    Email author
  1. 1.Department of ChemistryOsmania UniversityHyderabadIndia
  2. 2.RVR and JC College of EngineeringChowdavaram, GunturIndia
  3. 3.Centre for Materials for Electronics Technology (CMET)HyderabadIndia

Personalised recommendations