Fabrication of Superhydrophobic Ti/SnO2-Sb/α-PbO2/Fe-β-PbO2-PTFE Electrode and Application in Wastewater Treatment

  • Yuanzeng Jin
  • Yanqi Lv
  • Chao Yang
  • Wanxian Cai
  • Zhaobin Zhang
  • Hui Tong
  • Xingfu ZhouEmail author


SnO2-Sb and α-PbO2 have been successively deposited onto the surface of a titanium substrate, followed by fabrication of β-PbO2 doped with Fe element and polytetrafluoroethylene (PTFE) thereon. Due to the collaborative contribution of α-PbO2 and PTFE, the stability of the Ti/SnO2-Sb/α-PbO2/Fe-β-PbO2-PTFE electrode was found to be significantly improved. The oxygen evolution overpotential of the electrode was measured to be 1.95 V versus saturated calomel electrode (SCE). Also, the contact angle of the optimized superhydrophobic electrode reached 156.8°. The optimized superhydrophobic electrode modified with PTFE exhibited lower charge-transfer resistance and good oxidative ability towards organics. The electrocatalytic activity of the devised electrodes was studied using methyl orange degradation. Factors affecting the decolorization of methyl orange were optimized. After 30 min of electrolysis, a maximum removal efficiency of 83% was achieved at a current density of 30 mA cm−2 for an initial methyl orange concentration of 40 mg L−1 at pH 5. The results confirmed that the decolorization followed a first-order kinetics model. The color of the methyl orange solution changed from orange to colorless upon completion of the degradation reaction. Such superhydrophobic Ti/SnO2-Sb/α-PbO2/Fe-β-PbO2-PTFE electrodes could effectively degrade organic pollutants under low voltages, which is of great significance for reducing energy consumption.


Electrochemical oxidation superhydrophobic PTFE β-PbO2 electroplating 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This research was supported by the Natural Science Foundation of China (No. 21676146) and the Financial Foundation of State Key Laboratory of Materials-Oriented Chemical Engineering.


  1. 1.
    E. Tsantaki, T. Velegraki, A. Katsaounis, and D. Mantzavinos, J. Hazard. Mater. 207, 91 (2012).CrossRefGoogle Scholar
  2. 2.
    M. Zhou and J. He, J. Hazard. Mater. 153, 357 (2008).CrossRefGoogle Scholar
  3. 3.
    C.A. Martínez-Huitle, M.A. Rodrigo, I. Sirés, and O. Scialdone, Chem. Rev. 115, 13362 (2015).CrossRefGoogle Scholar
  4. 4.
    C.A. Martinez-Huitle and E. Brillas, Appl. Catal. B-Environ. 87, 105 (2009).CrossRefGoogle Scholar
  5. 5.
    E. Brillas and C.A. Martínez-Huitle, Appl. Catal. B-Environ. 166, 603 (2015).CrossRefGoogle Scholar
  6. 6.
    H. Lin, J. Niu, J. Xu, Y. Li, and Y. Pan, Electrochim. Acta 97, 167 (2013).CrossRefGoogle Scholar
  7. 7.
    Á. Anglada, A. Urtiaga, and I. Ortiz, J. Chem. Technol. Biotechnol. 84, 1747 (2009).CrossRefGoogle Scholar
  8. 8.
    Z. Xu, H. Liu, J. Niu, Y. Zhou, C. Wang, and Y. Wang, J. Hazard. Mater. 327, 144 (2017).CrossRefGoogle Scholar
  9. 9.
    P. Duan, X. Yang, G. Huang, J. Wei, Z. Sun, and X. Hu, Colloids Surf. A 569, 119 (2019).CrossRefGoogle Scholar
  10. 10.
    X. Duan, C. Zhao, W. Liu, X. Zhao, and L. Chang, Electrochim. Acta 240, 424 (2017).CrossRefGoogle Scholar
  11. 11.
    X. Li, H. Xu, and W. Yan, Appl. Surf. Sci. 389, 278 (2016).CrossRefGoogle Scholar
  12. 12.
    M. Xu, Z. Wang, F. Wang, P. Hong, C. Wang, X. Ouyang, C. Zhu, Y. Wei, Y. Hun, and W. Fang, Electrochim. Acta 201, 240 (2016).CrossRefGoogle Scholar
  13. 13.
    Z. Xu, Y. Yu, H. Liu, and J. Niu, Sci. Total Environ. 579, 1600 (2017).CrossRefGoogle Scholar
  14. 14.
    Q. Zhang, X. Guo, X. Cao, D. Wang, and J. Wei, Chin. J. Catal. 36, 975 (2015).CrossRefGoogle Scholar
  15. 15.
    X. Li, D. Pletcher, and F.C. Walsh, Chem. Soc. Rev. 40, 3879 (2011).CrossRefGoogle Scholar
  16. 16.
    F. Fu, W. Yang, and C. Ke, Mater. Chem. Phys. 220, 155 (2018).CrossRefGoogle Scholar
  17. 17.
    S. Abaci, U. Tamer, K. Pekmez, and A. Yildiz, Electrochim. Acta 50, 3655 (2005).CrossRefGoogle Scholar
  18. 18.
    J.M. Aquino, R.C. Rocha-Filho, L.A.M. Ruotolo, N. Bocchi, and S.R. Biaggio, Chem. Eng. J. 251, 138 (2014).CrossRefGoogle Scholar
  19. 19.
    J. Wu, H. Xu, and W. Yan, RSC Adv. 5, 19284 (2015).CrossRefGoogle Scholar
  20. 20.
    J. Niu, H. Lin, J. Xu, H. Wu, and Y. Li, Environ. Sci. Technol. 46, 10191 (2012).CrossRefGoogle Scholar
  21. 21.
    R. Inguanta, E. Rinaldo, S. Piazza, and C. Sunseri, J. Solid State Electrochem. 16, 3939 (2012).CrossRefGoogle Scholar
  22. 22.
    A. Moncada, M.C. Mistretta, S. Randazzo, S. Piazza, C. Sunseri, and R. Inguanta, J. Power Sources 256, 72 (2014).CrossRefGoogle Scholar
  23. 23.
    P.N. Bartlett, T. Dunford, and M.A. Ghanem, J. Mater. Chem. 12, 3130 (2002).CrossRefGoogle Scholar
  24. 24.
    Z. Wang, Y. Mao, M. Xu, Y. Wei, Y. Hu, C. Zhu, W. Fang, and F. Wang, J. Electrochem. Soc. 164, H981 (2017).CrossRefGoogle Scholar
  25. 25.
    T. Chen, X. Li, C. Qiu, W. Zhu, H. Ma, S. Chen, and O. Meng, Biosens. Bioelectron. 53, 200 (2014).CrossRefGoogle Scholar
  26. 26.
    M. Panizza and G. Cerisola, Chem. Rev. 109, 6541 (2009).CrossRefGoogle Scholar
  27. 27.
    J.P. Carr and N.A. Hampson, Chem. Rev. 72, 679 (1972).CrossRefGoogle Scholar
  28. 28.
    G. Zhao, Y. Zhang, Y. Lei, B. Lv, J. Gao, Y. Zhang, and D. Li, Environ. Sci. Technol. 44, 1754 (2010).CrossRefGoogle Scholar
  29. 29.
    R. Xie, X. Meng, P. Sun, J. Niu, W. Jiang, L. Bottomley, D. Li, Y. Chen, and J. Crittenden, Appl. Catal. B-Environ. 203, 515 (2017).CrossRefGoogle Scholar
  30. 30.
    Y. Jin, F. Wang, M. Xu, Y. Hun, W. Fang, Y. Wei, and C. Zhu, J. Taiwan Inst. Chem. E 51, 135 (2015).CrossRefGoogle Scholar
  31. 31.
    C. Yang, Y. Wang, B. Hu, H. Zhang, Y. Lv, and X. Zhou, J. Electron. Mater. 47, 5965 (2018).CrossRefGoogle Scholar
  32. 32.
    T. Darmanin, E.T. de Givenchy, S. Amigoni, and F. Guittard, Adv. Mater. 25, 1378 (2013).CrossRefGoogle Scholar
  33. 33.
    E. Vazirinasab, R. Jafari, and G. Momen, Surf. Coat. Technol. 341, 40 (2018).CrossRefGoogle Scholar
  34. 34.
    G. He, S. Lu, W. Xu, P. Ye, G. Liu, H. Wang, and T. Dai, J. Alloys Compd. 747, 772 (2018).CrossRefGoogle Scholar
  35. 35.
    X. Xing, J. Ni, X. Zhu, Y. Jiang, and J. Xia, Chemosphere 205, 361 (2018).CrossRefGoogle Scholar
  36. 36.
    Y. Jiang, Z. Hu, M. Zhou, L. Zhou, and B. Xi, Sep. Purif. Technol. 128, 67 (2014).CrossRefGoogle Scholar
  37. 37.
    R. Kotz, S. Stucki, and B. Carcer, J. Appl. Electrochem. 21, 14 (1991).CrossRefGoogle Scholar
  38. 38.
    Z. Wang, M. Xu, F. Wang, X. Liang, Y. Wei, Y. Hu, C.G. Zhu, and W. Fang, Electrochim. Acta 247, 535 (2017).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2020

Authors and Affiliations

  • Yuanzeng Jin
    • 1
  • Yanqi Lv
    • 1
  • Chao Yang
    • 1
  • Wanxian Cai
    • 1
  • Zhaobin Zhang
    • 1
  • Hui Tong
    • 1
  • Xingfu Zhou
    • 1
    Email author
  1. 1.State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical EngineeringNanjing Tech UniversityNanjingChina

Personalised recommendations