Advertisement

Enhanced Thermoelectric Performance of Polythiophene/Carbon Nanotube-Based Composites

  • X. Y. Jiang
  • Q. K. Zhang
  • S. P. Deng
  • B. Zhou
  • B. Wang
  • Z. Q. ChenEmail author
  • N. QiEmail author
  • X. F. Tang
Article

Abstract

Binary polythiophene/multiwalled carbon nanotube (PTh/MWCNT) and ternary PTh/SnSe/MWCNT composites with different weight proportions have been successfully prepared by solution mixing, ultrasonic dispersion, and mechanical ball milling. The morphology, microstructure, and thermal stability of all the samples were studied by x-ray diffraction analysis, Fourier-transform infrared spectroscopy, field-emission scanning electron microscopy, and thermogravimetric analysis. The electrical conductivity of both the binary PTh/MWCNT and ternary PTh/SnSe/MWCNT composites was increased by nearly five orders of magnitude compared with pure PTh across the whole measurement temperature range. However, the Seebeck coefficient at room temperature decreased sharply from \(453.4\,\mu {{\text {V K}}}^{-1}\) for pure PTh to \(11{-}20\,\mu {{\text {V K}}}^{-1}\) for the composites. The thermal conductivity of all the composites was lower than 0.6 \({{\text {W m}}}^{-1}\,{{\text {K}}}^{-1}\), being slightly higher than that of pure PTh. As a result, the ZT values of all the composites were much higher than that of pure PTh (\(0.032 \times 10^{-4}\)), reaching \(1.3 \times 10^{-4}\) and \(1.62 \times 10^{-4}\) at room temperature for the binary PTh/MWCNT and ternary PTh/SnSe/MWCNT composites, respectively. The maximum ZT value reached \(3.05 \times 10^{-4}\) at 433 K for the binary PTh/MWCNT composite with MWCNT content of 40 wt.%. These results suggest that the thermoelectric performance of PTh/MWCNT composites can be greatly enhanced compared with pure PTh.

Keywords

Thermoelectric material binary PTh/MWCNT composites ternary PTh/SnSe/MWCNT composites ZT 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grant Nos. 11575131, 11775163, and 11875208, and the Natural Science Foundation of Hubei Province under Grant No. 2016CFA080.

Conflict of Interest

There are no conflicts of interest to declare.

Supplementary material

11664_2019_7935_MOESM1_ESM.pdf (702 kb)
Supplementary material 1 (PDF 703 kb)

References

  1. 1.
    M. He, F. Qiu, and Z. Lin, Energy Environ. Sci. 6, 1352 (2013).CrossRefGoogle Scholar
  2. 2.
    B. Russ, A. Glaudell, J.J. Urban, M.L. Chabinyc, and R.A. Segalman, Nat. Rev. Mater. 1, 16050 (2016).CrossRefGoogle Scholar
  3. 3.
    H. Yao, Z. Fan, H. Cheng, X. Guan, C. Wang, K. Sun, and J. Ouyang, Macromol. Rapid Commun. 39, 1700727 (2018).CrossRefGoogle Scholar
  4. 4.
    B.T. McGrail, A. Sehirlioglu, and E. Pentzer, Angew. Chem. Int. Ed. 54, 1710 (2015).CrossRefGoogle Scholar
  5. 5.
    Y. Li, Y. Du, Y. Dou, K. Cai, and J. Xu, Synth. Met. 226, 119 (2017).CrossRefGoogle Scholar
  6. 6.
    G.H. Kim, L. Shao, K. Zhang, and K.P. Pipe, Nat. Mater. 12, 719 (2013).CrossRefGoogle Scholar
  7. 7.
    R. Kroon, D.A. Mengistie, D. Kiefer, J. Hynynen, J.D. Ryan, L. Yu, and C. Muller, Chem. Soc. Rev. 45, 6147 (2016).CrossRefGoogle Scholar
  8. 8.
    N. Toshima, Synth. Met. 225, 3–21 (2017).CrossRefGoogle Scholar
  9. 9.
    A.M. Glaudell, J.E. Cochran, S.N. Patel, and M.L. Chabinyc, Adv. Energy Mater. 5, 1401072 (2015).CrossRefGoogle Scholar
  10. 10.
    J. Zhao, D. Tan, and G. Chen, J. Mater. Chem. C 5, 47 (2017).CrossRefGoogle Scholar
  11. 11.
    X. Hu, G. Chen, X. Wang, and H. Wang, J. Mater. Chem. A 3, 20896 (2015).CrossRefGoogle Scholar
  12. 12.
    H. Ju, D. Park, and J. Kim, Chem. Eng. J 356, 950 (2019).CrossRefGoogle Scholar
  13. 13.
    Y. Li, F. Li, J. Dong, Z. Ge, F. Kang, J. He, H. Du, B. Li, and J.-F. Li, J. Mater. Chem. C 4, 2047 (2016).CrossRefGoogle Scholar
  14. 14.
    M. He, J. Ge, Z. Lin, X. Feng, X. Wang, H. Lu, Y. Yang, and F. Qiu, Energy Environ. Sci. 5, 8351 (2012).CrossRefGoogle Scholar
  15. 15.
    C. Chang, M. Wu, D. He, Y. Pei, C.F. Wu, X. Wu, H. Yu, F. Zhu, K. Wang, Y. Chen, L. Huang, J.F. Li, J. He, and L.D. Zhao, Science 360, 778 (2018).CrossRefGoogle Scholar
  16. 16.
    T. Zhang, K. Zhou, and Z.Q. Chen, Phys. Status Solidi B 252, 2179 (2015).CrossRefGoogle Scholar
  17. 17.
    H.F. He, X.F. Li, Z.Q. Chen, Y. Zheng, D.W. Yang, and X.F. Tang, J. Phys. Chem. C 118, 22389 (2014).CrossRefGoogle Scholar
  18. 18.
    X. Zhang and L.-D. Zhao, J. Materiomics 1, 92 (2015).CrossRefGoogle Scholar
  19. 19.
    H. Wang and C. Yu, Joule 3, 53 (2019).CrossRefGoogle Scholar
  20. 20.
    Y. Du, S.Z. Shen, W.D. Yang, K.F. Cai, and P.S. Casey, Synth. Met. 162, 375 (2012).CrossRefGoogle Scholar
  21. 21.
    C. Lai, J. Li, C. Pan, L. Wang, and X. Bai, J. Electron. Mater. 45, 5246 (2016).CrossRefGoogle Scholar
  22. 22.
    K. Hiraishi, A. Masuhara, H. Nakanishi, H. Oikawa, and Y. Shinohara, Jpn. J. Appl. Phys. 48, 071501 (2009).CrossRefGoogle Scholar
  23. 23.
    J. Liu, J. Sun, and L. Gao, Nanoscale 3, 3616–3619 (2011).CrossRefGoogle Scholar
  24. 24.
    L. Fan and X. Xu, RSC Adv. 5, 78104 (2015).CrossRefGoogle Scholar
  25. 25.
    M. Famili, I.M. Grace, Q. Al-Galiby, H. Sadeghi, and C.J. Lambert, Adv. Funct. Mater. 28, 1703135 (2018).CrossRefGoogle Scholar
  26. 26.
    B. Zhang, K. Wang, D. Li, and X. Cui, RSC Adv. 5, 33885 (2015).CrossRefGoogle Scholar
  27. 27.
    G.-H. Kim, J. Kim, and K.P. Pipe, Appl. Phys. Lett. 108, 093301 (2016).CrossRefGoogle Scholar
  28. 28.
    O. Bubnova, Z.U. Khan, A. Malti, S. Braun, M. Fahlman, M. Berggren, and X. Crispin, Nat. Mater. 10, 429 (2011).CrossRefGoogle Scholar
  29. 29.
    K. Wei, T. Stedman, Z.-H. Ge, L.M. Woods, and G.S. Nolas, Appl. Phys. Lett. 107, 153301 (2015).CrossRefGoogle Scholar
  30. 30.
    M.R. Karim, C.J. Lee, and M.S. Lee, J. Polym. Sci. A Polym. Chem. 44, 5283 (2006).CrossRefGoogle Scholar
  31. 31.
    W. Zheng, P. Bi, H. Kang, W. Wei, F. Liu, J. Shi, L. Peng, Z. Wang, and R. Xiong, Appl. Phys. Lett. 105, 023901 (2014).CrossRefGoogle Scholar
  32. 32.
    H. Wang, J.-H. Hsu, S.-I. Yi, S.L. Kim, K. Choi, G. Yang, and C. Yu, Adv. Mater. 27, 6855 (2015).CrossRefGoogle Scholar
  33. 33.
    H. Wang, S.-I. Yi, X. Pu, and C. Yu, ACS Appl. Mater. Interfaces 7, 9589 (2015).CrossRefGoogle Scholar
  34. 34.
    L. Liang, C. Gao, G. Chen, and C.-Y. Guo, J. Mater. Chem. C 4, 526 (2016).CrossRefGoogle Scholar
  35. 35.
    F. Erden, H. Li, X. Wang, F. Wang, and C. He, Phys. Chem. Chem. Phys. 20, 9411 (2018).CrossRefGoogle Scholar
  36. 36.
    T.P. Kaloni, P.K. Giesbrecht, G. Schreckenbach, and M.S. Freund, Chem. Mater. 29, 10248 (2017).CrossRefGoogle Scholar
  37. 37.
    G. Han, S.R. Popuri, H.F. Greer, J.W. Bos, W. Zhou, A.R. Knox, A. Montecucco, J. Siviter, E.A. Man, M. Macauley, D.J. Paul, W.G. Li, M.C. Paul, M. Gao, T. Sweet, R. Freer, F. Azough, H. Baig, N. Sellami, T.K. Mallick, and D.H. Gregory, Angew. Chem. Int. Ed. 55, 6433 (2016).CrossRefGoogle Scholar
  38. 38.
    L.D. Zhao, S.H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, and C. Wolverton, Nature 508, 373 (2014).CrossRefGoogle Scholar
  39. 39.
    L.D. Zhao, G. Tan, S. Hao, J. He, Y. Pei, H. Chi, H. Wang, S. Gong, H. Xu, V.P. Dravid, C. Uher, G.J. Snyder, C. Wolverton, and M.G. Kanatzidis, Science 351, 141 (2016).CrossRefGoogle Scholar
  40. 40.
    X.G. Li, J. Li, Q.K. Meng, and M.R. Huang, J. Phys. Chem. B 113, 9718 (2009).CrossRefGoogle Scholar
  41. 41.
    X. She, X. Su, H. Xie, J. Fu, Y. Yan, W. Liu, P.F. Poudeu Poudeu, and X. Tang, ACS Appl. Mater. Interfaces 10, 25519 (2018).CrossRefGoogle Scholar
  42. 42.
    M.R. Karim, K.T. Lim, C.J. Lee, and M.S. Lee, Synth. Met. 157, 1008 (2007).CrossRefGoogle Scholar
  43. 43.
    M.-D. Lu and S.-M. Yang, Synth. Met. 154, 73 (2005).CrossRefGoogle Scholar
  44. 44.
    X.G. Li, J. Li, and M.R. Huang, Chemistry 15, 6446 (2009).CrossRefGoogle Scholar
  45. 45.
    A. Agarwal, S.H. Chaki, and D. Lakshminarayana, Mater. Lett. 61, 5188 (2007).CrossRefGoogle Scholar
  46. 46.
    S. Mallakpour, A. Abdolmaleki, and S. Borandeh, Prog. Org. Coat. 77, 1966 (2004).CrossRefGoogle Scholar
  47. 47.
    D. Wang, L. Wang, W. Wang, X. Bai, and J. Li, in Third International Conference on Smart Materials and Nanotechnology in Engineering (2012).Google Scholar
  48. 48.
    L. Wang, X. Jia, D. Wang, G. Zhu, and J. Li, Synth. Met. 181, 79 (2013).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2020

Authors and Affiliations

  1. 1.Hubei Nuclear Solid Physics Key Laboratory, Department of PhysicsWuhan UniversityWuhanChina
  2. 2.State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhanChina

Personalised recommendations