Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Role of Si Incorporation on the Transparent Conducting Properties of In2O3 Thin Films

  • 10 Accesses


Thin films of indium oxide (In2O3) incorporated with Si ion impurities were prepared on glass substrates by a vacuum evaporation technique. The influence of the Si inclusion on the structural and optical properties of the host In2O3 films was analytically studied by the Rietveld refinement method. It was observed that the insertion of Si ion-species into In2O3 lattice did not change its bixbyite phase. However, a gradual deterioration of crystalline structure with increasing of Si inclusion in the films sample was observed. The optical measurements revealed that the band gap of host In2O3 films blue-shifted by the inclusion of Si ions, which was ascribed to the Moss-Burstein effect. The transparent conducting properties of the films (conductivity, carrier mobility and concentration) were extracted from optical measurements, and compared with the known conduction parameters measured by a direct electrical method. The electrical conductivity, carrier concentration and optical transparency of host In2O3 films were improved with Si incorporation for concentrations less than ∼ 16 at.%. However, Si-incorporation decreased the carrier mobility. For Si inclusion of ∼ 16 at.%, In2O3:Si film shows a resistivity of 3.73 × 10−3 Ω cm and an optical transparency of ∼ 90%, which are acceptable values for the fabrication of different types of photovoltaics.

This is a preview of subscription content, log in to check access.


  1. 1.

    C.H. Lee and C.S. Huang, Mater. Sci. Eng. B 22, 233 (1994).

  2. 2.

    A. Sudha, T.K. Maity, and S.L. Sharma, Mater. Lett. 164, 372 (2016).

  3. 3.

    G.I. Mihaela Girtan, G. Rusu, G. Rusu, and S. Gurlui, Appl. Surf. Sci. 162, 492 (2000).

  4. 4.

    T. Minami and T. Miyata, Thin Solid Films 517, 1474 (2008).

  5. 5.

    S. Kaleemulla, A. Sivasankar Reddy, S. Uthanna, and P. Sreedhara Reddy, J. Alloys Compd. 479, 589 (2009).

  6. 6.

    SZh Karazhanov, P. Ravindran, P. Vajeeston, A. Ulyashin, T.G. Finstad, and H. Fjellvag, Phys. Rev. B 76, 075129 (2007).

  7. 7.

    M. Marezio, Acta Crystallogr. 20, 723 (1966).

  8. 8.

    R.K. Gupta, K. Ghosh, R. Patel, S.R. Mishra, and P.K. Kahol, Mater. Chem. Phys. 112, 136 (2008).

  9. 9.

    X. Sun, K. M, C. Li, and W. Li, J. Alloys Compd. 764, 861 (2018).

  10. 10.

    S. Parthiban, V. Gokulakrishnan, K. Ramamurthi, E. Elangovan, R. Martins, E. Fortunato, and R. Ganesan, Sol. Energy Mater. Sol. Cells 93, 92 (2009).

  11. 11.

    Q. Zhang, X. Li, and G. Li, Thin Solid Films 517, 613 (2008).

  12. 12.

    M.-M. Bagheri-Mohagheghi and M. Shokooh-Saremi, Semicond. Sci. Technol. 18, 97 (2003).

  13. 13.

    F. Ye, X.-M. Cai, X. Zhong, X.-Q. Tian, S.-Y. Jing, L.-B. Huang, V.A.L. Roy, D.-P. Zhang, P. Fan, J.-T. Luo, Z.-H. Zheng, and G.-X. Liang, Thin Solid Films 556, 44 (2014).

  14. 14.

    H.-M. Lee and H.-K. Kim, J. Nanosci. Nanotechnol. 15, 7748 (2015).

  15. 15.

    R.D. Shannon, Acta Crystallogr. A 32, 751 (1976).

  16. 16.

    A.K. Das, P. Misra, and L.M. Kukreja, J. Physics D: Appl. Phys. 42, 165405 (2009).

  17. 17.

    B.D. Cullity and S.R. Stock, Elements of X-Ray Diffraction, 3rd ed. (New York: Prentice Hall, 2001), p. 102.

  18. 18.

    J. Tauc and F. Abelesn, Optical Properties of Solids (Dordrecht: North Holland, 1969).

  19. 19.

    P.D.C. King, T.D. Veal, F. Fuchs, ChY Wang, D.J. Payne, A. Bourlange, H. Zhang, G.R. Bell, V. Cimalla, O. Ambacher, R.G. Egdell, F. Bechstedt, and C.F. McConville, Phys. Rev. B 79, 205211 (2009).

  20. 20.

    A. Sudha, S.L. Sharma, and A.N. Gupta, Sens. Actuators, A 285, 378 (2019).

  21. 21.

    P.J.L. Herve and L.K.J. Vandamme, Infrared Phys. Technol. 35, 609 (1994).

  22. 22.

    O. Medenbach, T. Siritanon, M.A. Subramanian, R.D. Shannon, R.X. Fischer, and G.R. Rossman, Mater. Res. Bull. 48, 2240 (2013).

  23. 23.

    S. Repp and E. Erdem, Spectrochim. Acta, Part A 152, 637 (2016).

  24. 24.

    J.I. Pankove, Optical Processes in Semiconductors (NY: Dover, 1975), p. 36.

  25. 25.

    F. Fuchs and F. Bechstedt, Phys. Rev. B 77, 155107 (2008).

  26. 26.

    N. Preissler, O. Bierwagen, A.T. Ramu, and J.S. Speck, Phys. Rev. B 88, 085305 (2013).

  27. 27.

    H.L. Hartnagel, A.L. Dawar, A.K. Jain, and C. Jagadish, Semiconductiong, Transparent Thin Films, Institute of Publishing Bristol and Philadelphia, UK (London: Institute of Physics, 1995), p. 248.

  28. 28.

    M. Nistor, F. Gherendia, and J. Perrièreb, Mater. Sci. Semicond. Process. 88, 45 (2018).

  29. 29.

    C.-C. Yu, K.-S. Yang, H. Chang, J.-S. Lee, J.-Y. Lai, P.-Y. Chuang, J.-C. Andrew Huang, A.-C. Sun, F.-C. Wu, and H.-L. Cheng, Vacuum 102, 63 (2014).

  30. 30.

    A.E. Hassanien, H.M. Hashem, G. Kamel, S. Soltan, A.M. Moustafa, M. Hammam, and A.A. Ramadan, Int. J. Thin Film. Sci. Tec. 5, 55 (2016).

  31. 31.

    S. Kaleemulla, A. Sivasankar Reddy, S. Uthanna, and P. Sreedhara Reddy, Optoelectron. Adv. Mat. 2, 782 (2008).

Download references

Author information

Correspondence to A. A. Dakhel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dakhel, A.A. Role of Si Incorporation on the Transparent Conducting Properties of In2O3 Thin Films. Journal of Elec Materi 49, 2296–2301 (2020). https://doi.org/10.1007/s11664-019-07931-y

Download citation


  • Si-incorporated In2O3
  • In2O3 films
  • Transparent conduction oxide