Skip to main content
Log in

Comparative Study of Optical and Electrical Properties of Grown-In and Freshly Introduced Dislocations in GaN by SEM Methods

  • Topical Collection: 18th Conference on Defects (DRIP XVIII)
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Electrical and optical properties of grown-in and freshly introduced dislocations in GaN have been studied by the electron beam induced current and cathodoluminescence methods. It is observed that the recombination properties of grown-in and freshly introduced basal plane and threading dislocations are comparable. That allows to assume the intrinsic nature of dislocation recombination activity in GaN. It is demonstrated that the recombination properties of basal plane dislocations weakly depend on their type. The behavior of dislocation-related luminescence at 3.1 eV is more complex. It can be observed not in all GaN crystals even when dislocations are introduced in the similar conditions. Besides, it is not observed on basal plane and threading grown-in dislocations. This luminescence is not produced by freshly introduced basal plane dislocations. These observations can be explained assuming that the dislocation-related luminescence is associated with point defects generated by dislocations gliding in pyramidal or prismatic slip planes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.C. Jain, M. Willander, J. Narayan, R. Van Overstraeten, J. Appl. Phys. 87, 965 (2000)

    CAS  Google Scholar 

  2. N. Lu, I. Ferguson, Semicond. Sci. Technol. 28, 074023 (2013)

    Google Scholar 

  3. S.J. Pearton, F. Ren, E. Patrick, M.E. Law, A.Y. Polyakov, ECS J. Solid State Sci. Technol. 5, Q35 (2016)

    CAS  Google Scholar 

  4. H. Amano, Y. Baines, E. Beam, M. Borga, T. Bouchet, P.R. Chalker, M. Charles, K.J. Chen, N. Chowdhury, R. Chu, C. De Santi, M.M. De Souza, S. Decoutere, L. Di Cioccio, B. Eckardt, T. Egawa, P. Fay, J.J. Freedsman, L. Guido, O. Haberlen, G. Haynes, T. Heckel, D. Hemakumara, P. Houston, J. Hu, M. Hua, Q. Huang, A. Huang, S. Jiang, H. Kawai, D. Kinzer, M. Kuball, A. Kumar, K.B. Lee, X. Li, D. Marcon, M. Marz, R. McCarthy, G. Meneghesso, M. Meneghini, E. Morvan, A. Nakajima, E.M.S. Narayanan, S. Oliver, T. Palacios, D. Piedra, M. Plissonnier, R. Reddy, M. Sun, I. Thayne, A. Torres, N. Trivellin, V. Unni, M.J. Uren, M. Van Hove, D.J. Wallis, J. Wang, J. Xie, S. Yagi, S. Yang, C. Youtsey, R. Yu, E. Zanoni, S. Zeltner, Y. Zhang, J. Phys. D: Appl. Phys. 51, 163001 (2018)

    Google Scholar 

  5. C. Chu, K. Tian, Y. Zhang, W. Bi, Z.-H. Zhang, Phys. Status Solidi A 216, 1800815 (2019)

    Google Scholar 

  6. S.O. Kucheyev, J.E. Bradby, J.S. Williams, C. Jagadish, M. Toth, M.R. Phillips, M.V. Swain, Appl. Phys. Lett. 77, 3373 (2000)

    CAS  Google Scholar 

  7. J.L. Weyher, M. Albrecht, T. Wosinski, G. Nowak, H.P. Strunk, S. Porowski, Mater. Sci. Eng. B 80, 318 (2001)

    Google Scholar 

  8. S.-R. Jian, Appl. Surf. Sci. 254, 6749 (2008)

    CAS  Google Scholar 

  9. I. Ratschinski, H.S. Leipner, F. Heyroth, W. Fränzel, R. Hammer, M. Jurisch, Philos. Mag. Lett. 90, 565 (2010)

    CAS  Google Scholar 

  10. J. Huang, K. Xu, X.J. Gong, J.F. Wang, Y.M. Fan, J.Q. Liu, X.H. Zeng, G.Q. Ren, T.F. Zhou, H. Yang, Appl. Phys. Lett. 98, 221906 (2011)

    Google Scholar 

  11. M. Fujikane, T. Yokogawa, S. Nagao, R. Nowak, Jpn. J. Appl. Phys. 52, 08JJ01 (2013)

    Google Scholar 

  12. P.G. Caldas, E.M. Silva, R. Prioli, J.Y. Huang, R. Juday, A.M. Fischer, F.A. Ponce, J. Appl. Phys. 121, 125105 (2017)

    Google Scholar 

  13. O. Medvedev, O. Vyvenko, E. Ubyivovk, S. Shapenkov, A. Bondarenko, P. Saring, M. Seibt, J. Appl. Phys. 123, 161427 (2018)

    Google Scholar 

  14. V.I. Orlov, P.S. Vergeles, E.B. Yakimov, X. Li, J. Yang, G. Lv, S. Dong, Phys. Status Solidi A 216, 1900163 (2019)

    Google Scholar 

  15. P.S. Vergeles, V.I. Orlov, A.Y. Polyakov, E.B. Yakimov, T. Kim, I.-H. Lee, J. Alloys Compd. 776, 181 (2019)

    CAS  Google Scholar 

  16. K. Maeda, K. Suzuki, M. Ichihara, S. Nishiguchi, K. Ono, Y. Mera, S. Takeuchi, Phys. B 273–274, 134 (1999)

    Google Scholar 

  17. E.B. Yakimov, P.S. Vergeles, A.Y. Polyakov, I.-H. Lee, S.J. Pearton, Appl. Phys. Lett. 106, 132101 (2015)

    Google Scholar 

  18. E.B. Yakimov, P.S. Vergeles, A.Y. Polyakov, I.-H. Lee, S.J. Pearton, Jpn. J. Appl. Phys. 55, 05FM03 (2016)

    Google Scholar 

  19. S.J. Rosner, E.C. Carr, M.J. Ludowise, G. Girolami, H.I. Erikson, Appl. Phys. Lett. 70, 420 (1997)

    CAS  Google Scholar 

  20. E.B. Yakimov, J. Phys.: Condens. Matter. 14, 13069 (2002)

    CAS  Google Scholar 

  21. E.B. Yakimov, A.Y. Polyakov, I.-H. Lee, S.J. Pearton, J. Appl. Phys. 123, 161543 (2018)

    Google Scholar 

  22. E.B. Yakimov, Jpn. J. Appl. Phys. 55, 05FH04 (2016)

    Google Scholar 

  23. I.-H. Lee, A.Y. Polyakov, N.B. Smirnov, E.B. Yakimov, S.A. Tarelkin, A.V. Turutin, I.V. Shemerov, S.J. Pearton, Appl. Phys. Express 9, 061002 (2016)

    Google Scholar 

  24. I.-H. Lee, A.Y. Polyakov, N.B. Smirnov, E.B. Yakimov, S.A. Tarelkin, A.V. Turutin, I.V. Shemerov, S.J. Pearton, J. Appl. Phys. 119, 205109 (2016)

    Google Scholar 

  25. C. Jiao, D. Cherns, J. Electron Microsc. 51, 105 (2002)

    CAS  Google Scholar 

  26. E. Müller, D. Gerthsen, P. Bruckner, F. Scholz, Th Gruber, A. Waag, Phys. Rev. B 73, 245316 (2006)

    Google Scholar 

  27. I. Arslan, A. Bleloch, E.A. Stach, S. Ogut, N.D. Browning, Phil. Mag. 86, 4727 (2006)

    CAS  Google Scholar 

  28. A. Krtschil, A. Dadgar, A. Krost, J. Crystal Growth 248, 542 (2003)

    CAS  Google Scholar 

  29. M. Albrecht, L. Lymperakis, J. Neugebauer, Phys. Rev. B 90, 241201(R) (2014)

    Google Scholar 

  30. J. Huang, K. Xu, Y.M. Fan, J.F. Wang, J.C. Zhang, G.Q. Ren, Nanoscale Res. Lett. 9, 649 (2014)

    Google Scholar 

  31. O. Medvedev, O. Vyvenko, A. Bondarenko, Phys. Status Solidi C 14, 1700111 (2017)

    Google Scholar 

  32. L. Lymperakis, J. Neugebauer, M. Albrecht, T. Remmele, H.P. Strunk, Phys. Rev. Lett. 93, 196401 (2004)

    CAS  Google Scholar 

  33. I. Belabbas, J. Chen, P. Komninou, G. Nouet, Comput. Mater. Sci. 79, 118 (2013)

    CAS  Google Scholar 

  34. I. Belabbas, J. Chen, G. Nouet, Phys. Status Solidi C 12, 1123 (2015)

    CAS  Google Scholar 

  35. I. Belabbas, I.G. Vasileiadis, J. Moneta, J. Smalc-Koziorowska, G.P. Dimitrakopulos, J. Appl. Phys. 126, 165702 (2019)

    Google Scholar 

  36. T. Hino, S. Tomiya, T. Miyajima, K. Yanashima, S. Hashimoto, M. Ikeda, Appl. Phys. Lett. 76, 3421 (2000)

    CAS  Google Scholar 

  37. N.M. Shmidt, O.A. Soltanovich, A.S. Usikov, E.B. Yakimov, E.E. Zavarin, J. Phys.: Condens. Matter. 14, 13285 (2002)

    CAS  Google Scholar 

  38. V.M. Kaganer, K.K. Sabelfeld, O. Brandt, Appl. Phys. Lett. 112, 122101 (2018)

    Google Scholar 

  39. I. Arslan, N.D. Browning, Phys. Rev. Lett. 91, 165501 (2003)

    CAS  Google Scholar 

  40. M.E. Hawkridge, D. Cherns, Appl. Phys. Lett. 87, 221903 (2005)

    Google Scholar 

  41. E.B. Yakimov, P.S. Vergeles, A.Y. Polyakov, N.B. Smirnov, A.V. Govorkov, I.-H. Lee, C.R. Lee, S.J. Pearton, Appl. Phys. Lett. 90, 152114 (2007)

    Google Scholar 

  42. A.Y. Polyakov, N.B. Smirnov, A.V. Govorkov, A.V. Markov, E.B. Yakimov, P.S. Vergeles, N.G. Kolin, D.I. Merkurisov, V.M. Boiko, I.-H. Lee, C.R. Lee, S.J. Pearton, J. Electron. Mater. 36, 1320 (2007)

    CAS  Google Scholar 

  43. E.B. Yakimov, P.S. Vergeles, A.Y. Polyakov, N.B. Smirnov, A.V. Govorkov, I.-H. Lee, C.R. Lee, S.J. Pearton, Appl. Phys. Lett. 92, 042118 (2008)

    Google Scholar 

  44. Z. Liliental-Weber, D. Cherns, J. Appl. Phys. 89, 7833 (2001)

    CAS  Google Scholar 

  45. H. Yoshinaga, S. Morozumi, Philos. Mag. 23, 1351 (1971)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. S. Vergeles.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vergeles, P.S., Yakimov, E.B. & Orlov, V.I. Comparative Study of Optical and Electrical Properties of Grown-In and Freshly Introduced Dislocations in GaN by SEM Methods. J. Electron. Mater. 49, 5173–5177 (2020). https://doi.org/10.1007/s11664-019-07930-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07930-z

Keywords

Navigation