Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Effect of Composition on the Optical and Electrical Conductivity of CuIn(SexS1−x)2

  • 16 Accesses

Abstract

Optical and electrical conductivity of chalcopyrite CuIn(SexS1−x)2 (0 ≤ x ≤ 1) amorphous thin films are investigated. A transmission has been measured in a wavelength range (200 ≤ λ ≤ 2500 nm). The calculated optical energy band gap (Eg) and Urbach tail (band tail width) Eu decrease with increasing Se content. Refractive index (n) is estimated according to the Wemple–DiDomenico single oscillator model. Oscillator energy (E°), dispersion energy (Ed), and the ratio of free carrier concentration to electron effective mass (N/m*) are calculated from optical data for all thin films. Also, the high frequency dielectric constant at an infinite wavelength (ε), lattice high frequency dielectric constant (εL) and static refractive index (n°) are determined. Electrical conductivity (σ) is obtained at room temperature.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    W.N. Honeyman and K.H. Wilkinson, J. Phys. D Appl. Phys. 4, 1182 (1971).

  2. 2.

    K. Zeaiter and C. Llinare`s, J. Appl. Phys. 86, 6822 (1999).

  3. 3.

    C.D. Lokhande and S.H. Pawar, Phys. Status Solidi A 111, 11 (1989).

  4. 4.

    T. Isomura, T. Kariya, and S. Shirakata, Cryst. Res. Technol. 31, 523 (1996).

  5. 5.

    J.A. Thornton, T.C. Lommasson, H. Talieh, and B.H. Tseng, Sol. Cells 12, 1 (1988).

  6. 6.

    L. Stolt, J. Hedstrom, J. Kessler, M. Ruckh, K. Veltheus, and H.W. Schock, Appl. Phys. Lett. 62, 597 (1993).

  7. 7.

    A.F. Hepp, M.T. Andras, S.G. Beiley, and S.A. Duraj, Adv. Mater. Opt. Electron. 1, 99 (1992).

  8. 8.

    A. Rockett and R.W. Birkmire, J. Appl. Phys. 70, R81 (1997).

  9. 9.

    U. Rau and H.W. Schock, Appl. Phys. A 69, 131 (1999).

  10. 10.

    J.L. Shay, B. Tell, H.M. Kaspe, and L.M. Schiavone, Phys. Rev. B 5, 5003 (1972).

  11. 11.

    M.A. Contreras, K. Ramanathan, J. Abu Shama, F. Hasoon, D.I. Young, B. Egaas, and R. Noufi, Prog. Photovolt. Res. Appl. 13, 209 (2005).

  12. 12.

    K. Ramanathan, M.A. Contreras, C.L. Perkins, S. Asher, and F.S. Hasoon, et al., Res. Appl. 11, 225 (2003).

  13. 13.

    J.F. Guillemoles, L. Kronik, D.C.U. Rau, A. Jasenek, and H.W. Schock, J. Phys. Chem. B 104, 4849 (2000).

  14. 14.

    H. Hahn, G. Frank, W. Klingler, A.D. Meyer, and G. Stoerger, Golden Book of Phase Transitions, Wroclaw, 1, 1 (2002).

  15. 15.

    B.A. Mansour, H. Shaban, and S.H. Moustafa, Phys. Low. Dimens. Struct. 3, 127 (2004).

  16. 16.

    F.C. Akkari, M. Kanzari, and B. Rezig, Mater. Sci. Eng. C 28, 692 (2008).

  17. 17.

    J. Gonzalez-Hernandez, P.M. Gorley, P.P. Horley, O.M. Vartsabyuk, and Y.V. Vorobiev, Thin Solid Films 403, 471 (2002).

  18. 18.

    M. Abaab, M. Kanzari, B. Rezig, and M. Brunel, Sol. Energy Mater. Sol. Cells 59, 299 (1999).

  19. 19.

    S. Peng, J. Liang, L. Zhang, Y. Shi, and J. Chen, J. Cryst. Growth 305, 99 (2007).

  20. 20.

    C. Kan, J. Ch Wang, and H.Li Zhu, J. Solid State Chem. 183, 858 (2010).

  21. 21.

    K.M.A. Hussain, J. Podder, D.K. Saha, and M. Ichimura, Indian J. Pure Appl. Phys. 50, 117 (2012).

  22. 22.

    J. Tauc, Amorphous and Liquid Semiconductors (London: Plenum Press, 1974).

  23. 23.

    E.A. David and N.F. Mott, Philos. Mag. 22, 903 (1970).

  24. 24.

    J.A. Olley, Solid State Commun. 13, 1437 (1973).

  25. 25.

    K. Boubaker, Eur. Phys. J. Plus. 126, 1 (2011).

  26. 26.

    R. Swanepoel, J. Phys. E Sci. Instrum. 16, 1214 (1983).

  27. 27.

    S. Bhaskar, S.B. Majumder, M. Jain, P.S. Dobal, and R.S. Katiyar, Thin Films Mater. Sci. Eng. B 87, 178 (2001).

  28. 28.

    S.H. Wemple, Phys. Rev. B 7, 3767 (1973).

  29. 29.

    S.H. Wemple and M. DiDomenico, Phys. Rev. B 3, 1338 (1971).

  30. 30.

    G.A. Kumar, J. Thomas, N. George, B.A. Kumar, P. Radhakrishnan, V.P.N. Nampoori, and C.P.G. Vallabhan, Phys. Chem. Glasses 41, 89 (2000).

  31. 31.

    N.M. Shah, C.J. Panchal, V.A. Kheraj, J.R. Ray, and M.S. Desai, Sol. Energy 83, 753 (2009).

  32. 32.

    B. Jariwala, D. Shah, and N.M. Ravindra, Thin Solid Films 589, 396 (2015).

  33. 33.

    F.A. Jenkins and H.E. White, Fundamentals of Optics (London: McGraw-Hill, 1985), p. 479.

  34. 34.

    K. Anshu and A. Sharma, Optik 127, 48 (2016).

  35. 35.

    F. Hulliger and E. Mooser, Prog. Solid State Chem. 2, 330 (1965).

  36. 36.

    M. Nishitani, T. Negami, M. Terauchi, and T. Hirao, Jpn. J. Appl. Phys. 31, 192 (1992).

Download references

Author information

Correspondence to S. A. Gad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mansour, B.A., Shaban, H., Gad, S.A. et al. Effect of Composition on the Optical and Electrical Conductivity of CuIn(SexS1−x)2. Journal of Elec Materi 49, 2273–2278 (2020). https://doi.org/10.1007/s11664-019-07928-7

Download citation

Keywords

  • CuIn (SexS1−x)2
  • amorphous thin films
  • optical properties
  • electrical properties