Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Enhanced Anharmonic Oscillations in Cu0.5Tl0.5Ba2(Ca2−yMgy)Cu3−xCdxO10−δ (y = 0, 1; x = 0, 1.5) Superconductors

  • 4 Accesses

Abstract

Cu0.5Tl0.5Ba2Ca2Cu3O10−δ (undoped), Cu0.5Tl0.5Ba2(CaMg)Cu3O10−δ (Mg-doped), Cu0.5Tl0.5Ba2Ca2Cu1.5Cd1.5O10−δ (Cd-doped), and Cu0.5Tl0.5Ba2(CaMg)Cu1.5Cd1.5O10−δ (Cd/Mg-codoped) samples were synthesized by two-step solid-state reaction at 860°C to investigate the possible role of anharmonic oscillations of atoms in the mechanism of high critical temperature (Tc) superconductivity. The samples showed orthorhombic crystal structure with smaller and larger unit cell volume for the Mg- and Cd/Mg-codoped samples, respectively, compared with the undoped sample. Tc observed by resistivity measurements decreased in the Cd-doped samples, but the maximum suppression was observed in the Cd/Mg-codoped sample showing semiconductor behavior. Fourier-transform infrared (FTIR) absorption spectroscopy revealed hardening of apical oxygen modes on the incorporation of Mg atoms as compared with the undoped sample and similarly with the doping of Mg atoms in the Cd-doped sample, confirming the intrinsic inclusion of these elements in the final compound. Excess conductivity analysis revealed suppression in the coherence length (ξc(0)), interlayer coupling (J), phase relaxation time (τφ) of carriers, Fermi velocity (VF) of carriers, Ginzburg–Landau (GL) parameter κ, breaking energy (Ebreak), and magnetic field penetration depth (λp.d) in Cd-doped samples. The values of Bc0(T), Bc1(T), and Jc(0) increased in the Cd-doped samples, showing enhancement of flux-pinning characteristics. It is proposed that Cd doping at CuO2-planar site induces anharmonic oscillation in the solid-state medium, which suppresses the density of phonons and thereby the density of Cooper pairs and hence superconductivity. These studies emphasize the essential role of electron–phonon interactions in the mechanism of high-Tc superconductivity.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Y. Maeno, H. Hashimoto, K. Yoshida, S. Nishizaki, T. Fujita, J.G. Bednorz, and F. Lichtenberg, Nature 372, 532 (1994).

  2. 2.

    R.J. Cava, H. Takagi, H.W. Zandbergen, J.J. Krajewski Jr, W.F. Peck, T. Siegrist, B. Batlogg, R.B. Van Dover, R.J. Felder, K. Mizuhashi, J.O. Lee, H. Eisaki, and S. Uchida, Nature 367, 252 (1994).

  3. 3.

    A.F. Hebard, M.J. Rosseinsky, R.C. Haddon, D.W. Murphy, S.H. Glarum, T.T. Palstra, A.P. Ramirez, and A.R. Kortan, Nature 350, 600 (1991).

  4. 4.

    J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, and J. Akimitsu, Nature 410, 63 (2001).

  5. 5.

    Y. Kamihara, H. Hiramatsu, M. Hirano, R. Kawamura, H. Yanagi, T. Kamiya, and H.J. Hosono, Am. Chem. Soc. 128, 10012 (2006).

  6. 6.

    Y. Kamihara, T. Watanabe, M. Hirano, and H.J. Hosono, Am. Chem. Soc. 130, 3296 (2008).

  7. 7.

    Y. Wang, H. Sato, Y. Toda, S. Ueda, H. Hiramatsu, and H. Hosono, Chem. Mater. Soc. 226, 8503 (2014).

  8. 8.

    K.A. Jasim and T.J. Alwan, J. Supercond. Nov. Magn. 30, 3451 (2017).

  9. 9.

    V. Tallapally, D. Damma, and S.R. Darmakkolla, Chem. Commun. 55, 1560 (2019).

  10. 10.

    Y. Wang, H. Sato, Y. Toda, S. Ueda, H. Hiramatsu, and H. Hosono, Chem. Mater. 26, 7209 (2014).

  11. 11.

    D.J.C. Walker, A.P. Mackenzie, and J.R. Cooper, Phys. Rev. B 51, 15653 (1995).

  12. 12.

    X. Zhang, K.W. Yip, and C.K. Ong, Phys. Rev. B 51, 1277 (1995).

  13. 13.

    I.G. Kaplan, J. Soullard, and H. Cobos, J. Phys. Rev. B 65, 214509 (2002).

  14. 14.

    Y. Fukuzumi, K. Mizuhashi, and S. Ushida, Phys. Rev. B 61, 627 (2000).

  15. 15.

    V.N. Vieira, P. Pureur, and J. Schaf, Phys. Rev. B 66, 224506 (2002).

  16. 16.

    Y. Maeno, T. Tomita, M. Kyogoki, S. Awaji, Y. Aoki, K. Hoshino, A. Minami, and T. Fujita, Nature 328, 512 (1987).

  17. 17.

    H. Alloul, P. Mendels, H. Casalta, J.F. Marucco, and J. Arabski, Phys. Rev. Lett. 67, 3140 (1991).

  18. 18.

    S.H. Pan, E.W. Hudson, K.M. Lang, H. Eisaki, S. Uchida, and J.C. Davis, Nature 403, 746 (2000).

  19. 19.

    M. Akoshima, T. Noji, Y. Ono, and Y. Koike, Phys. Rev. B 57, 7491 (1998).

  20. 20.

    Y. Hanaki, Y. Ando, and S. Ono, Phys. Rev. B 64, 172514 (2001).

  21. 21.

    Y.K. Kuo, C.W. Schneider, M.J. Skove, M.V. Nevitt, G.X. Tessema, and J.J. McGee, Phys. Rev. B 56, 6201 (1997).

  22. 22.

    N. Kakinuma, Y. Ono, and Y. Koike, Phys. Rev. B 59, 1491 (1999).

  23. 23.

    B. Nachumi, A. Keren, K. Kojima, M. Larkin, G.M. Luke, J. Merrin, O. Tchernyshöv, Y.J. Uemura, N. Ichikawa, M. Goto, and S. Uchida, Phys. Rev. Lett. 77, 5421 (1996).

  24. 24.

    J.L. Tallon, C. Berhard, G.V.M. Williams, and J.W. Loram, Phys. Rev. Lett. 79, 5294 (1997).

  25. 25.

    A.A. Khurram and N.A. Khan, Supercond. Sci. Technol. 19, 679 (2006).

  26. 26.

    S.K. Agarwal, A. Iyo, K. Tokiwa, Y. Tanaka, K. Tanaka, M. Tokumoto, N. Terada, T. Saya, M. Umeda, and H. Ihara, Phys. Rev. B 58, 9504 (1998).

  27. 27.

    N.A. Khan and A.A. Khurram, Appl. Phys. Lett. 86, 152502 (2005).

  28. 28.

    N.A. Khan, A. Javed, and A.A. Khurram, Phys. C 425, 90 (2005).

  29. 29.

    N.A. Khan, and S. Nawaz, IEEE Trans. Appl. Supercond. 16, 2 (2006).

  30. 30.

    N.A. Khan, G. Hasnain, and K. Sabeeh, J. Phys. Chem. Solids 67, 1841 (2006).

  31. 31.

    N.A. Khan and G. Husnain, Phys. C 436, 51 (2006).

  32. 32.

    M. Mumtaz and N.A. Khan, J. Appl. Phys. 103, 083913 (2008).

  33. 33.

    N.A. Khan and M. Rahim, J. Alloys Compd. 481, 81 (2009).

  34. 34.

    N.A. Khan, M. Mumtaz, and A.A. Khurrum, J. Appl. Phys. 104, 033916 (2008).

  35. 35.

    A. Raza, S.H. Safeer, and N.A. Khan, J. Supercond. Nov. Magn. 30, 1153 (2017).

  36. 36.

    N.A. Khan and A. Raza, J. Supercond. Nov. Magn. 23, 199 (2010).

  37. 37.

    M. Rahim and N.A. Khan, J. Alloys Compd. 572, 74 (2013).

  38. 38.

    J.M. Tarascon, P. Barboux, P.F. Miceli, L.H. Greene, G.W. Hull, M. Eibschutz, and S.A. Sunshine, Phys. Rev. B 37, 7458 (1988).

  39. 39.

    I. Felner, I. Nowik, E.R. Bauminger, D. Hechel, and U. Yaron, Phys. Rev. Lett. 65, 1945 (1990).

  40. 40.

    A.K. Bandyopadhyay, D. Varandani, E. Gmelin, and A.V. Narlikar, Phys. Rev. B 50, 462 (1994).

  41. 41.

    A. Gupta, R. Lal, A. Sedky, A.V. Narlikar, and V.P.S. Awana, Phys. Rev. B 61, 11752 (2000).

  42. 42.

    X. Zhao, S. Nakao, K. Ueno, G. Kinoda, T. Endo, T. Hanaguri, K. Kitazawa, and T. Hasegawa, Phys. B 284, 1065 (2000).

  43. 43.

    U. Tipparach, T.P. Chen, J.L. Wanger, K. Wu, Q.Y. Chen, Q. Li, J.T. Wang, H.C. Yang, and H.E. Horng, Phys. C 364, 404 (2001).

  44. 44.

    A. Poddar, B. Bandyopadhyay, and B. Chattopadhyay, Phys. C 390, 126 (2003).

  45. 45.

    S. Isber, R. Awad, A.I. Abou-Aly, M. Tabbal, and J.M. Kaouar, Supercond. Sci. Technol. 18, 311 (2005).

  46. 46.

    J.G. Bednorz and K.A.Z. Müller, Phys. B 64, 189 (1986).

  47. 47.

    T. Sato, H. Nakane, N. Mori, and S. Yoshizawa, Phys. C 244, 344 (2003).

  48. 48.

    A. Das and R. Suryanarayanan, J. Phys. 15, 623 (1995).

  49. 49.

    A.K. Ghosh, S.K. Bandyopadhyay, P. Barat, P. Sen, and A.N. Basu, Phys. C 264, 255 (1996).

  50. 50.

    W.E. Lawrence, and S. Doniach, in Proceedings of the Twelfth International Conference on Low Temperature Physics, ed. E. Kanda (Keigaku, Tokyo, 1971), p. 361.

  51. 51.

    A. Sedky, J. Low Temp. Phys. 148, 53 (2007).

  52. 52.

    A. Raza, M. Rahim, and N.A. Khan, Ceram. Int. 39, 4349 (2013).

  53. 53.

    A.I. Abu Aly, I.H. Ibrahim, R.A. Awad, and A. El-Harizy, J. Supercond. Nov. Magn. 23, 1325 (2010).

  54. 54.

    A.L. Solovjov, V.M. Dmitriev, H.U. Habermeier, and I.E. Trofimov, Phys. Rev. B 55, 8551 (1997).

  55. 55.

    S.K. Nath, K.H. Maria, S. Noor, S.S. Sikder, S.M. Hoque, and M.A. Hakim, J. Magn. Magn. Mater. 324, 2116 (2012).

Download references

Author information

Correspondence to Najmul Hassan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Raza, A., Khan, N.A. & Hassan, N. Enhanced Anharmonic Oscillations in Cu0.5Tl0.5Ba2(Ca2−yMgy)Cu3−xCdxO10−δ (y = 0, 1; x = 0, 1.5) Superconductors. Journal of Elec Materi 49, 2302–2309 (2020). https://doi.org/10.1007/s11664-019-07912-1

Download citation

Keywords

  • CuTl-based superconductors
  • flux pinning
  • anharmonic oscillations
  • electron–phonon interactions
  • excess conductivity