Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Thermally Conducting Polymer Composites with EMI Shielding: A review

  • 38 Accesses

Abstract

Polymer composites have been a material of choice for lightweight and durable applications in sectors ranging from automobile, packaging, structural components, and electronics to energy harvesting. Their versatility and ability to be tailored to application requirements have made them prospective alternatives for metal enclosures used in communication systems, power electronics, electric motors, and generators. The easy processing and high strength-to-weight ratio provide advantages over traditional materials that involve time- and-labor intensive processes. However, high thermal conductivity (TC) and electromagnetic interference (EMI) shielding are factors limiting their penetration into niche markets, and thus the development of alternatives with high TC and EMI shielding efficiency is critical. Thermally conductive polymer composites and EMI shielding effectiveness (SE) is a current issue in different applications including polymers providing light weight, corrosion resistance, and ease of processing as compared with metal. This paper focuses on improvements in the TC and shielding effectiveness of polymers by incorporating various fillers including carbon-based, mineral-based, and hybrid fillers. The paper reviews the current research worldwide regarding the enhancement of the TC and shielding effectiveness of polymer composites.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    M. Imai, K. Akiyama, T. Tanaka, and E. Sano, Comput. Sci. Technol. 70, 1564 (2010).

  2. 2.

    X. Jing, Y. Wang, and B. Zhang, J. Appl. Polym. Sci. 98, 2149 (2005).

  3. 3.

    Y. Youngjae, H.U. Kim, B.K. Jeon, J.C. Won, and S. Lee, Polym. Adv. Technol. 16, 344 (2005).

  4. 4.

    Y. Yimin, X. Zeng, K. Guo, R. Sun, and J.-b. Xu, Appl. Sci. Manuf. 69, 49 (2015).

  5. 5.

    J. Gu, X. Yang, Z. Lv, N. Li, C. Liang, and Q. Zhang, Int. J. Micro. Nano Scale Transf. 92, 22 (2016).

  6. 6.

    J. Nanda, C. Maranville, S.C. Bollin, D. Sawall, H. Ohtani, J.T. Remil-Lard, and J.M. Ginder, J. Phys. Chem. 112, 8 (2008).

  7. 7.

    S. Ghosh, S. Ganguly, S. Remanan, S. Mondal, S. Jana, S. Maji, P.K. Singha, and N. Das, J. Mater. Sci. Mater. El. 29, 10177 (2018).

  8. 8.

    V. Kasar and A. Pawar, Int. J. Sci. Res. 3, 11 (2014).

  9. 9.

    K. Jagadeesan, A. Ramasamy, A. Das, and A. Basu, Indian J. Fibre Text. 39, 329 (2014).

  10. 10.

    G.S. Kumar, D. Vishnupriya, A. Joshi, S. Datar, and T.U. Patro, Phys. Chem. 17, 20347 (2015).

  11. 11.

    R.R. Mohan, S.J. Varma, M. Faisal, and S. Jayalekshmi, RSC. Adv. 5, 5917 (2015).

  12. 12.

    W.L. Song, M.S. Cao, M.M. Lu, S. Bi, C.Y. Wang, J. Liu, J. Yuan, and L.Z. Fan, Carbon 66, 67 (2014).

  13. 13.

    Y. Yang and M.C. Gupta, Kenneth L Dudley (2007). https://doi.org/10.1088/0957-4484/18/34/345701.

  14. 14.

    V. Eswaraiah, V. Sankaranarayanan, and S. Ramaprabhu, Macromol. Mater. Eng. (2011). https://doi.org/10.1002/mame.201100035.

  15. 15.

    R.R. Mohan and S.J. Varma, J. Sankaran. (2016). https://doi.org/10.1063/1.4945791.

  16. 16.

    S. Motojima, Y. Noda, S. Hoshida, and Y. Hishikawa, J. Appl. Phys. 94, 2325 (2003).

  17. 17.

    Norm, and B. Warmeubertragung, Kenngrößen, Ausg (1986).

  18. 18.

    Balandin and A. Alexander, Nat. Mater. 10, 569 (2011).

  19. 19.

    E. Dehaghani, and H.M. Nazempour, Smart nanoparticles technology. IntechOpen, (2012).

  20. 20.

    C.L. Choy, W.H. Luk, and F.C. Chen, Polymer 19, 162 (1978).

  21. 21.

    Burger, N. Laachachi, A. Ferriol, M. Lutz, M. Toniazzo, and V. Ruch, Prog. Polym. Sci. 61, 162 (2016).

  22. 22.

    C.L. Choy, F.C. Chen, and W.H. Luk, J. Polym. Sci. Polym. Phys. 18, 1187 (1980).

  23. 23.

    D. Li, Q. Chen, Y. Yang, Y. Chen, and C. Xiao, Plast. Rubber. Compos. 46, 266 (2017).

  24. 24.

    F. Zhang, Q. Li, Y. Liu, S. Zhang, and C. Wu, J. Therm. Anal. Calorim. (2016). https://doi.org/10.1007/s10973-015-4903-7.

  25. 25.

    Y.C. Jia, H. He, P. Yu, J. Chen, and X.L. Lai, Express Polym. Lett. 10, 679 (2016).

  26. 26.

    C. Liang, Q. Guangrong, and L. Zhijian, Electromagnetism (2010).

  27. 27.

    H. Zhang, Nucl. Sci Technol. 1, 1 (2018).

  28. 28.

    Y. Fengbin, X. Xianghua, and W. Wenhua, Ins. Mater. 41, 16 (2008).

  29. 29.

    Z. Dong-sheng and L. Zheng-feng, Mater. Rev. 23, 13 (2009).

  30. 30.

    F. Qin and H.X. Peng, Prog. Mater. Sci. 58, 183 (2013).

  31. 31.

    J.S. Roh, Y.S. Chi, and T.J. Kang, Text Res. J78, 825 (2008).

  32. 32.

    S. Brzezinski, T. Rybicki, I. Karbownik, G. Malinowska, E. Rybicki, L. Szugajew, M. Lao, and K. Sledzinska, Fibres Text East Eur. 17, 66 (2009).

  33. 33.

    E.J. Carlson, Mater. Perform. 29, 76 (1990).

  34. 34.

    K.B. Cheng, K.B. Ramakrishna, and K.B. Lee, Compos. Part. A31, 1039 (2000).

  35. 35.

    D.D.L. Chung, Carbon 39, 279 (2001).

  36. 36.

    Zhang and C. Sheng, Comput. Sci. Technol. 67, 2973 (2007).

  37. 37.

    S. Tan, M. Zhang, and H. Zeng, J. Mater. Eng. 5, 6 (1998).

  38. 38.

    K.Y. Park, S.E. Lee, S.E. Kim, and C.G.J.H. Han, Compos Struct. 81, 401 (2007).

  39. 39.

    S.E. Lee, S.E. Kang, and C.G. Kim, Compos Struct. 76, 397 (2006).

  40. 40.

    S. Jianbin and W. Zhang, S J Polym. Res. 21, 556 (2014).

  41. 41.

    E. Drakakis and E. Kymakis, Appl. Surf. Sci. 398, 15 (2017).

  42. 42.

    S.G. Pardo, L. Arboleda, A. Ares, X. García, S. Dopico, and J. Maria, Poly. Comput. 34, 1938 (2013).

  43. 43.

    H. Mohammed and U. Sundararaj, Carbon 47, 1738 (2009).

  44. 44.

    Y. Wang, G.H. Dong, C. Xiao, X. Du, and S. Wang, Ceram. Int. 42, 936 (2016).

  45. 45.

    L. Yanju and D. Song, Composites. 63, 34 (2014).

  46. 46.

    N. Burger, A. Laachachi, M. Ferriol, M. Lutz, V. Toniazzo, and D. Ruch, Prog. Poly. Sci. 61, 1 (2016).

  47. 47.

    M. Filali, [Ph.D. thesis] Conductivité Thermique Apparente desMilieux Granulaires Soumis à Des Contraintes Mécaniques: Mod-élisation Et Mesures. Institut National Polytechnique de Toulouse, (2006).

  48. 48.

    S. Chandrasekaran, C. Seidel, and K. Schulte, Eur. Polym. J. 49, 3878 (2013).

  49. 49.

    Choi, J. Ran, K.Y. Rhee, and S.J. Park, Compos. Part B Eng. 80, 379 (2015).

  50. 50.

    J. Gu, Z. Lv, Y. Wub, R. Zhao, L. Tian, and Q. Zhang, Composites. A79, 8 (2015).

  51. 51.

    M.A. Raza, A.V.K. Westwood, and C. Stirling, Mater. Chem. Phys. 13, 63 (2012).

  52. 52.

    A.K. Chakraborty, T. Plyhm, M. Barbezat, A. Necola, and G.P. Terrasi, J. Nanopart Res. 13, 6493 (2011).

  53. 53.

    Y. Ming, H. Chi, R. Blaser, C. Xu, J. Yang, M. Veenstra, M. Gaab, U. Müller, C. Uher, and D.J. Siegel, Int. J. Heat Mass Trans. 82, 250 (2015).

  54. 54.

    D.L. Gaxiola, J.M. Keith, J.A. King, and B.A. Johnson, J. Appl. Polym. Sci. 114, 3261 (2009).

  55. 55.

    I.M. Afanasov, D.V. Savchenko, S.G. Ionov, D.A. Rusako, A.N. Seleznev, and V.V. Avdeev, Inorg. Mater. 45, 486 (2009).

  56. 56.

    J. Gu, X. Yang, Z. Lv, N. Li, C. Liang, and Q. Zhang, Int. J. Micro Nano Scale Transf. 92, 15 (2016).

  57. 57.

    A. Yu, P. Ramesh, X. Sun, E. Bekyarova, M.E. Itkis, and R.C. Haddon, Adv. Mater. 20, 4740 (2008).

  58. 58.

    J. Nanda, C. Maranville, S.C. Bollin, D. Sawall, H. Ohtani, J.T. Remil-lard, and J.M. Ginder, J. Phys. Chem. 112, 654 (2008).

  59. 59.

    R.A. Hauser, J.A. King, R.M. Pagel, and J.M. Keith, J. Appl. Polym. Sci. 109, 2145 (2008).

  60. 60.

    A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, and F. Miao, Nano Lett. 8, 902 (2008).

  61. 61.

    M. Martin-Gallego, R. Verdejo, M. Khayet, J.M.O.D. Zarate, M. Essalhi, and M.A. Lopez-Manchado, Nanoscale Res. Lett. 6, 610 (2011).

  62. 62.

    X. Sun, H. Sun, H. Li, and H. Peng, Adv. Mater. 25, 5153 (2013).

  63. 63.

    D.D.L. Chung, Appl. Therm. Eng. 21, 1593 (2001).

  64. 64.

    Y. Yao, X. Zeng, K. Guo, R. Sun, and J.B. Xu, Polym. Compos. 69, 49 (2015).

  65. 65.

    A. Boudenne, [Ph.D. thesis] Etude Expérimentale Et Théorique DesPropriétés Thermophysiques de Matériaux Composites à MatricePolymère. Université Paris XII Val de Marne, 193 (2003).

  66. 66.

    M. Donnay, S. Tzavalas, and E. Logakis, Compos. Sci. Technol. 110, 152 (2015).

  67. 67.

    J.A. King, R.L. Barton, R.A. Hauser, and J.M. Keith, Polym. Compos. 29, 421 (2008).

  68. 68.

    V. Causin, C. Marega, A. Marigo, G. Ferrara, and A. Ferraro, Eur. Polym. J. 42, 3153 (2006).

  69. 69.

    H. Tu and L. Ye, Polym. Adv. Technol. 20, 21 (2009).

  70. 70.

    Y.W. Wong, K.L. Lo, and F.G. Shin, J. Appl. Polym. Sci. 82, 1549 (2001).

  71. 71.

    N. Abdel-Aal, F. El-Tantawy, A. Al-Hajry, and M. Bououdina, Polym. Compos. 29, 511 (2008).

  72. 72.

    J.A. King, F.A. Morrison, J.M. Keith, M.G. Mille, R.C. Smith, M. Cruz, A.M. Neuhalfen, and R.L. Barton, J. Appl. Polym. Sci. 101, 2680 (2006).

  73. 73.

    F. Qin and C. Brosseaua, J. Appl. Phys. 111, 061301 (2012).

  74. 74.

    P.B. Jana, A.K. Mallick, and S.K. De, IEEE Trans. 34, 478 (1992).

  75. 75.

    D. Kumlutas, I.S. Tavmana, and M.T. Coban, Compos Sci Technol. 63, 113 (2003).

  76. 76.

    A. Boudenne, L. Ibos, M. Fois, J.C. Majeste, and E. Gehin, Compos. A 36, 1545 (2005).

  77. 77.

    H.S. Tekce, D. Kumlutas, and I.H. Tavman, J. Reinf. Plast. Compos. 26, 113 (2007).

  78. 78.

    Y.P. Mamunya, V.V. Davydenko, P. Pissis, and E.V. Lebedev, Eur Polym. 38, 1887 (2002).

  79. 79.

    S.K. Nayak, S. Mohanty, and S.K. Nayak, Multiscale Multidiscip. Model. Exp. Des. (2019). https://doi.org/10.1007/s41939-019-00064-z.

  80. 80.

    Z.Q. Baker, M.K. Abdelazeez, and A.M.J. Zihlif, Mater. Sci. 23, 299594 (1998).

  81. 81.

    S. Yu, P. Hing, and X. Hu, Compos. A 33, 289 (2002).

  82. 82.

    H. Ishida and S. Rimdusit, Thermochim. Acta 320, 177 (1998).

  83. 83.

    M. Ohashi, S. Kawakami, and Y. Yokogawa, J. Am. Ceram. Soc. 88, 2615 (2005).

  84. 84.

    S. Feng and G. Diao, Polym. Compos. 28, 125 (2007).

  85. 85.

    J. Gu, Q. Zhang, J. Dang, J. Zhang, and Z. Yang, Polym. Eng. Sci. 49, 1030 (2009).

  86. 86.

    F.I. Riley, J. Am. Ceram. Soc. 83, 245 (2000).

  87. 87.

    K. Hirao, K. Wateri, H. Hayashi, and M. Kitayama, MRS Bull. 26, 451 (2001).

  88. 88.

    S.K. Nayak, S. Mohanty, and S.K. Nayak, SN Appl. Sci. 1, 337 (2019).

  89. 89.

    Q. Yuchang, W. Qinlong, L. Fa, and Z. Wancheng, J. Mater. Chem. 4, 4853 (2016).

  90. 90.

    X. Zhang, X. Zhang, M. Yang, S. Yang, H. Wu, S. Guo, and Y. Wang, Comput. Sci. Technol. 136, 104 (2016).

  91. 91.

    X. Lu and G. Xu, J. Appl. Poly. Sci. 65, 2733 (1997).

  92. 92.

    A. Boudenne, L. Ibos, M. Fois, J.C. Majeste, and E. Gehin, Compos. Appl. Sci. Manuf. 36, 1545 (2005).

  93. 93.

    W.Y. Zhou, S.H. Qi, S.C.C. Tu, H.Z. Zhao, C.F. Wang, and J.L. Kou, J. Appl. Poly. Sci. 104, 1312 (2007).

  94. 94.

    S.H. Wu, J. Appl. Polym. Sci. 35, 549 (1988).

  95. 95.

    Z. Bartczak, A.S. Argon, R.E. Cohen, and M. Weinberg, Polymer 40, 2347 (1999).

  96. 96.

    Y. Cai, X. Yin, S. Fan, L. Zhang, L. Cheng, Y. Wang, and H. Yin, Ceram. Int. 40, 14029 (2014).

  97. 97.

    Q.G. Chi, J.F. Dong, G.Y. Liu, Y. Chen, X. Wang, and Q.Q. Lei, Ceram. Int. 41, 15116 (2015).

  98. 98.

    J.G. Hong, S. Glabman, and Y. Chen, J. Membr. Sci. 482, 33 (2015).

  99. 99.

    S.B. Lee, H.J. Lee, and I.K. Hong, J. Ind. Eng. Chem. 18, 635 (2012).

  100. 100.

    H. Zhou, Z.D. Xia, X.Y. Wang, Z. Li, T.T. Li, and F. Guo, Polym. Compos. 36, 1371 (2015).

  101. 101.

    Y.R. Uhm, J. Kim, K.J. Son, and C.S. Kim, Res. Chem. Intermed. 40, 2145 (2014).

  102. 102.

    V.S. Chaunan, N.K. Bhardwaj, and S.K. Chakrabarti, Chem. Eng. 91, 855 (2013).

  103. 103.

    L. Schrempp-Koops, Int. J. Nanosci. 12, 1350015 (2013).

  104. 104.

    N.Z.N. Azman, S.A. Siddiqui, and R. Hart, Appl. Radiat. Isotopes. 71, 62 (2013).

  105. 105.

    S.K. Nayak, S. Mohanty, and S.K. Nayak, J. Mater. Sci. Mater. El. 30, 20574 (2019).

  106. 106.

    H.F. Kudina and A.I. Burya, International Scientific Conference. 19 (2010).

  107. 107.

    J. Fritzsche, H. Lorenz, and M. Kluppel, Macromol. Mater. Eng. 294, 551 (2009).

  108. 108.

    C.C. Teng, C.C.M. Ma, K.C. Chiou, T.M. Lee, and Y.F. Shih, Mater. Chem. Phys. 126, 722 (2011).

  109. 109.

    K. Yang and M. Gu, Compos. Part A. 41, 215 (2010).

  110. 110.

    P.C. Ma, M.Y. Liu, H. Zhang, S.Q. Wang, R. Wang, K. Wang, Y.K. Wong, B.Z. Tang, S.H. Hong, and K.W. Paik, ACS Appl. Mater. Int. 1, 1090 (2009).

  111. 111.

    R. Socher, B. Krause, S. Hermasch, R. Wursche, and P. Potschke, Compos. Sci. Technol. 71, 1053 (2011).

  112. 112.

    J. Sumfleth, S.T. Buschhorn, and K. Schulte, J. Mater. Sci. 46, 659 (2011).

  113. 113.

    J. Hong, D.W. Park, and S.E. Shim, Nanocomposites. Macromol. Res. 20, 465 (2012).

  114. 114.

    A. Vivet, B.B. Doudou, C. Poilane, J. Chen, and M. Ayachi, J. Mater. Sci. (2011). https://doi.org/10.1007/s10853-010-4919-0.

  115. 115.

    N. Lachman, H. Qian, M. Houlle, J. Amadou, M.S.P. Shaffer, and H.D. Wagner, J. Mater. Sci. 48, 5590 (2013).

  116. 116.

    G. Zheming, L. Chunzhong, W. Gengchao, Z. Ling, C. Qilin, L. Xiaohui, W. Wendong, and J. Shilei, J. Ind. Eng. Chem. 16, 10 (2010).

  117. 117.

    M. Drubetski, A. Siegmann, and M. Narkis, J. Mater. Sci. (2007). https://doi.org/10.1007/s10853-006-1203-4.

  118. 118.

    W. Thongruang, R.J. Sponta, and C.M. Balik, Polymer 43, 2279 (2002).

  119. 119.

    D.H. Park, Y.K. Lee, S.S. Park, C.S. Lee, S.H. Kim, and W.N. Kim, Macromol. Res. 8, 905 (2013).

  120. 120.

    G. Pinto and A.J. Martin, Polym. Compos. 22, 65 (2001).

  121. 121.

    S.S. Ray and M. Biswas, Synth. Metals. 108, 231 (2000).

  122. 122.

    Y.F. Zhao, M. Xiao, S.J. Wang, X.C. Ge, and Y.Z. Meng, Compos. Sci. Technol. 67, 2528 (2007).

  123. 123.

    D.D.L. Chung, Carbon 39, 2 (2001). https://doi.org/10.1016/s0008-6223(00)00184-6.

  124. 124.

    D.T. Colbert, Plast. Addit. Compd. 5, 18 (2003).

  125. 125.

    Y. Yang, M.C. Gupta, K.L. Dudley, and R.W. Lawrence, Nano Lett. 5, 2131 (2005).

  126. 126.

    H.M. Kim, K. Kim, C.Y. Lee, J. Joo, S.J. Cho, H.S. Yoon, D.A. Pejakovic, J.W. Yoo, and A.J. Epstein, Appl. Phys. Lett. 84, 589 (2004).

  127. 127.

    S.M. Yuen, C.C.M. Ma, C.Y. Chuang, K.C. Yu, S.Y. Wu, C.C. Yang, and M.H. Wei, Compos. Sci. Technol. 68, 963 (2008).

  128. 128.

    Z. Liu, G. Bai, Y. Huang, Y. Ma, F. Du, F. Li, T. Guo, and Y. Chen, Carbon 45, 821 (2007).

  129. 129.

    W. Michaeli and T. Pfefferkorn, Polym. Eng. Sci. 49, 1511 (2009).

  130. 130.

    T. Villmow, S. Pegel, P. Potschke, and U. Wagenknecht, Compos. Sci. Technol. 68, 777 (2008).

  131. 131.

    A. Chandra, A.J. Kramschuster, X. Hu, and L.S. Turng, In Proceedings of the Annual Technical Conference (ANTEC), Cincinnati, OH, USA, 6, 2171 (2007).

  132. 132.

    F. Stan, L. Sandu, and C. Fetecau, Compos. Part BEng. 59, 109 (2014).

  133. 133.

    D.R. Kroshefsky, L. Jack, and D. Mangaraj, Rubber Chem. Technol. 82, 340 (2009).

  134. 134.

    A.S. Babal, R. Gupta, B.P. Singh, V.N. Singh, and R. Sanjay, RSC Adv. 110, 64649 (2014).

  135. 135.

    N. Li, Y. Huang, F. Du, X. He, X. Lin, H. Gao, Y. Ma, F. Li, Y. Chen, and P.C. Eklund, Nano Lett. 6, 1141 (2006).

  136. 136.

    P. Shailaja, B.P. Singh, and R.B. Mathur, 333 (2014).

  137. 137.

    A. Gupta and V. Choudhary, Compos Sci Technol. 71, 1563 (2011).

  138. 138.

    S. Zhou, Y. Chen, H. Zou, and M. Liang, Thermochim. Acta 566, 84 (2013).

  139. 139.

    F. Zhang, Q. Li, Y. Liu, S. Zhang, C. Wu, and W. Guo, J. Therm. Anal. Calorim. 123, 431 (2016).

  140. 140.

    W.Yu, H.Xie, L.Chen, M.Wang, and W.Wang, polymer composites. (2015).

  141. 141.

    C. Feng, H. Ni1, J. Chen, and W. Yang, ACS Appl. Mater. Interfaces, (2016).

  142. 142.

    Burger, N. Laachachi, A. Ferriol, M. Lutz, M. Toniazzo, and V. Ruch, Prog. Polym. Sci. 61, 1187 (2016).

  143. 143.

    L. Przemyslaw, A. Lukomska, and R. Jeziorska, Polimery 61, 663 (2016).

Download references

Author information

Correspondence to Subhransu S. Pradhan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pradhan, S.S., Unnikrishnan, L., Mohanty, S. et al. Thermally Conducting Polymer Composites with EMI Shielding: A review. Journal of Elec Materi 49, 1749–1764 (2020). https://doi.org/10.1007/s11664-019-07908-x

Download citation

Keywords

  • Thermal conductivity
  • EMI shielding
  • hybrid filler
  • polymer composite