Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Rheological Behavior and Thermal Conductivities of Emulsion-Based Thermal Pastes

Abstract

The role of thermal interface materials (TIMs) has become substantial due to their critical applications in electronic devices for effective heat dissipation. Dimethyl silicone oil-based thermal pastes are widely used as TIMs because they can provide an intimate bonding between the heat sink and the electronic chip; however, the thermal conductivities of typical silicone oil-based thermal pastes are low. In this study, we prepared thermally conductive emulsion-based thermal pastes with two kinds of boron nitride (BN) fillers and investigated their rheological behavior and thermal conductivities. The emulsion was composed of dimethyl silicone oil, n-butanol, and sorbitan monooleate (Span 80) as an emulsifier. The fillers were boron nitride fibers (BNFs) and boron nitride nanosheets (BNNSs). The viscosity, storage modulus, and loss modulus of the emulsion-based pastes were smaller than those of the corresponding silicone oil-based ones. The thermal conductivities of the emulsion based pastes were larger than those of the silicone oil-based ones because of their lower viscosity and higher baseline thermal conductivity. The pastes with BNNSs had larger thermal conductivities in comparison with the corresponding ones with BNFs. To further enhance the thermal conductivity, BNNSs were coated with two silane coupling agents, 3-aminopropyl-triethoxy silane (KH550) and 3-(Trimethoxysilyl)propyl methacrylate (KH570), and then introduced into the emulsion. The maximum thermal conductivity was 1.04 W m−1 K−1 for the emulsion-based paste with KH550-coated BNNSs at a filler loading of 39 vol.%, which was a ∼ 7-fold increase in comparison with that of neat silicone oil (0.13 W m−1 K−1).

This is a preview of subscription content, log in to check access.

References

  1. 1.

    X. Yang, C. Liang, T. Ma, Y. Guo, J. Kong, J. Gu, M. Chen, and J. Zhu, Adv. Compos. Hybrid Mater. 1, 207 (2018).

  2. 2.

    W. Dai, L. Lv, J. Lu, H. Hou, Q. Yan, F.E. Alam, Y. Li, X. Zeng, J. Yu, Q. Wei, X. Xu, J. Wu, N. Jiang, S. Du, R. Sun, J. Xu, C.P. Wong, and C.T. Lin, ACS Nano 13, 1547 (2019).

  3. 3.

    Z. Tian, J. Sun, S. Wang, X. Zeng, S. Zhou, S. Bai, N. Zhao, and C.P. Wong, J. Mater. Chem. A 6, 17540 (2018).

  4. 4.

    Z. Fang, M. Li, S. Wang, Y. Li, X. Wang, Y. Gu, Q. Liu, J. Tian, and Z. Zhang, Appl. Compos. Mater. 25, 1255 (2018).

  5. 5.

    F. Sarvar, D.C. Whalley, and P.P. Conway, in 1st IEEE Electron. Syst. Technol. Conf. Proceeding (2006), pp. 1292–1302.

  6. 6.

    J. Hansson, T.M.J. Nilsson, L. Ye, and J. Liu, Int. Mater. Rev. 63, 22 (2018).

  7. 7.

    H. Yu, L. Li, and Y. Zhang, Scr. Mater. 66, 931 (2012).

  8. 8.

    C.K. Leong, Y. Aoyagi, and D.D.L. Chung, J. Electron. Mater. 34, 1336 (2005).

  9. 9.

    H. Chen, H. Wei, M. Chen, F. Meng, H. Li, and Q. Li, Appl. Surf. Sci. 283, 525 (2013).

  10. 10.

    C.K. Leong and D.D.L. Chung, Carbon 41, 2459 (2003).

  11. 11.

    K. Zhang, Y. Lu, N. Hao, and S. Nie, Cellulose 26, 8669 (2019).

  12. 12.

    W. Yu, H. Xie, L. Chen, Z. Zhu, J. Zhao, and Z. Zhang, Phys. Lett. A 378, 207 (2014).

  13. 13.

    W. Yu, J. Zhao, M. Wang, Y. Hu, L. Chen, and H. Xie, Nanoscale Res. Lett. 10, 113 (2015).

  14. 14.

    Y. Guo, Z. Lyu, X. Yang, Y. Lu, K. Ruan, Y. Wu, J. Kong, and J. Gu, Compos. B 164, 732 (2019).

  15. 15.

    T.L. Li and S.L.C. Hsu, J. Phys. Chem. B 114, 6825 (2010).

  16. 16.

    C.C. Teng, C.C.M. Ma, K.C. Chiou, T.M. Lee, and Y.F. Shih, Mater. Chem. Phys. 126, 722 (2011).

  17. 17.

    G.W. Lee, M. Park, J. Kim, J.I. Lee, and H.G. Yoon, Compos. A 37, 727 (2006).

  18. 18.

    K. Sato, H. Horibe, T. Shirai, Y. Hotta, H. Nakano, H. Nagai, K. Mitsuishi, and K. Watari, J. Mater. Chem. 20, 2749 (2010).

  19. 19.

    H. Ishida and S. Rimdusit, Thermochim. Acta 320, 177 (1998).

  20. 20.

    K.C. Yung and H. Liem, J. Appl. Polym. Sci. 106, 3587 (2007).

  21. 21.

    Y. Xu and D.D.L. Chung, Compos. Interfaces 7, 243 (2000).

  22. 22.

    X. Yang, Y. Guo, Y. Han, Y. Li, T. Ma, M. Chen, J. Kong, J. Zhu, and J. Gu, Compos. B 175, 107070 (2019).

  23. 23.

    L.C. Sim, S.R. Ramanan, H. Ismail, K.N. Seetharamu, and T.J. Goh, Thermochim. Acta 430, 155 (2005).

  24. 24.

    C.H. Liu, H. Huang, Y. Wu, and S.S. Fan, Appl. Phys. Lett. 84, 4248 (2004).

  25. 25.

    L. Liu, D. Su, Y. Tang, and G. Fang, Renew. Sustain. Energy Rev. 62, 305 (2016).

  26. 26.

    C. Lin and D.D.L. Chung, J. Mater. Sci. 42, 9245 (2007).

  27. 27.

    W. Khalil, A. Mohamed, M. Bayoumi, and T.A. Osman, Iran. J. Sci. Technol. Trans. Mech. Eng. 42, 355 (2018).

  28. 28.

    M. Ashour, A. Mohamed, A.B. Elshalakany, T. Osman, and A. Khatab, Ind. Lubr. Tribol. 70, 331 (2018).

  29. 29.

    C. Lin and D.D.L. Chung, J. Electron. Mater. 38, 2069 (2009).

  30. 30.

    X. He and Y. Wang, J. Appl. Polym. Sci. 136, 47726 (2019).

  31. 31.

    L. Han, L. Huiqiang, L. Zuoye, and C. Sheng, Rare Met. Mater. Eng. 47, 2668 (2018).

  32. 32.

    W. Yu, H. Xie, L. Yin, J. Zhao, L. Xia, and L. Chen, Int. J. Therm. Sci. 91, 76 (2015).

  33. 33.

    D. Miller, E.M. Wiener, A. Turowski, C. Thunig, and H. Hoffmann, Colloids Surf. A 152, 155 (1999).

  34. 34.

    A.G. De Boos and T. Jellinek, J. Macromol. Sci. Chem. 17, 311 (1982).

  35. 35.

    F. Wang, J. Liu, X. Fang, and Z. Zhang, Sol. Energy Mater. Sol. Cells 147, 101 (2016).

  36. 36.

    A. Yazdan, J.Z. Wang, B.K. Hu, W.S. Xie, L.Y. Zhao, C.W. Nan, and L.L. Li, Rare Met. (2019). https://doi.org/10.1007/s12598-019-01322-2.

  37. 37.

    M. Kawaguchi, Adv. Colloid Interface Sci. 233, 186 (2016).

  38. 38.

    S. Vílchez, L.A. Pérez-Carrillo, J. Miras, C. Solans, and J. Esquena, Langmuir 28, 7614 (2012).

  39. 39.

    Z. Hu, M. Liao, Y. Chen, Y. Cai, L. Meng, Y. Liu, N. Lv, Z. Liu, and W. Yuan, Int. J. Nanomed. 7, 5719 (2012).

  40. 40.

    Q. Xu, M. Nakajima, H. Nabetani, S. Iwamoto, and X. Liu, J. Am. Oil Chem. Soc. 78, 1185 (2001).

  41. 41.

    R. Pal, J. Colloid Interface Sci. 225, 359 (2000).

  42. 42.

    T. Kanwal, M. Kawish, R. Maharjan, I. Ghaffar, H.S. Ali, M. Imran, S. Perveen, S. Saifullah, S.U. Simjee, and M.R. Shah, J. Mol. Liq. 289, 111098 (2019).

  43. 43.

    J. Cho, Y.J. Park, H. Sun, S. Kim, and Y. Yoon, Colloids Surf. A 274, 43 (2006).

  44. 44.

    R. Pal, AIChE J. 42, 3181 (1996).

  45. 45.

    Y. Otsubo and R.K. Prud’homme, Rheol. Acta 33, 303 (1994).

  46. 46.

    Q. Zhu, H. Lu, J. Zhu, M. Zhang, and L. Yin, Food Hydrocolloids 91, 204 (2019).

  47. 47.

    S.S. Datta, D.D. Gerrard, T.S. Rhodes, T.G. Mason, and D.A. Weitz, Phys. Rev. 84, 041404 (2011).

  48. 48.

    J. Xiao, X. Wang, A.J. Perez Gonzalez, and Q. Huang, Food Hydrocolloids 54, 30 (2016).

  49. 49.

    S. Mallakpour and M. Madani, J. Mater. Sci. 49, 5112 (2014).

  50. 50.

    C.M. Lee, J.D. Kubicki, B. Fan, L. Zhong, M.C. Jarvis, and S.H. Kim, J. Phys. Chem. B 119, 15138 (2015).

  51. 51.

    S.H. Su, Y. Huang, S. Qu, W. Liu, R. Liu, and L. Li, Diamond Relat. Mater. 81, 161 (2018).

  52. 52.

    H. Yu, L. Li, T. Kido, G. Xi, G. Xu, and F. Guo, J. Appl. Polym. Sci. 124, 669 (2012).

  53. 53.

    Y. Zhou, J. Yu, X. Wang, Y. Wang, J. Zhu, and Z. Hu, Fibers Polym. 16, 1772 (2015).

  54. 54.

    Z. Ma, J. Wang, and X. Zhang, J. Appl. Polym. Sci. 107, 1000 (2008).

  55. 55.

    I. Jang, K.H. Shin, I.L. Yang, H. Kim, J. Kim, W.H. Kim, S.W. Jeon, and J.P. Kim, Colloids Surf. A 518, 64 (2017).

  56. 56.

    J. Gu, Z. Lv, Y. Wu, Y. Guo, L. Tian, H. Qiu, W. Li, and Q. Zhang, Compos. A 94, 209 (2017).

  57. 57.

    J. Gu, C. Liang, J. Dang, W. Dong, and Q. Zhang, RSC Adv. 6, 35809 (2016).

  58. 58.

    H. Du, Y. Qi, W. Yu, J. Yin, and H. Xie, Int. J. Heat Mass Transfer 112, 1052 (2017).

  59. 59.

    H. Hong, D. Thomas, A. Waynick, W. Yu, P. Smith, and W. Roy, J. Nanopart. Res. 12, 529 (2010).

  60. 60.

    Y.H. Zhao, Y.F. Zhang, and S.L. Bai, Compos. A 85, 148 (2016).

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Grant No. 51572149), Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, Opening Project of Engineering Research Center of Nano-Geo Materials of Ministry of Education of China University of Geosciences (Grant No. NGM2018KF010), and National Key Research and Development Program of China (Grant No. 2016YFA0201003). We thank Ms. Chan Liu in School of Materials Science and Engineering at Tsinghua University for the help in thermal gravimetric analysis.

Author information

Correspondence to Liangliang Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yazdan, A., Wang, J., Nan, C. et al. Rheological Behavior and Thermal Conductivities of Emulsion-Based Thermal Pastes. Journal of Elec Materi 49, 2100–2109 (2020). https://doi.org/10.1007/s11664-019-07907-y

Download citation

Keywords

  • Emulsion
  • boron nitride
  • thermal conductivity
  • thermal paste