Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Study of Photocatalytic Properties of Ag/AgCl-Decorated Soybean Protein Knitting Fabric Against Acid Blue 260 Dye by Factorial Design

Abstract

Photocatalytic materials have been the focus of several studies due to their excellent optical photoexcitation properties for waste treatment. However, their use promotes the generation of inorganic secondary waste, due to their nanometric grain size, which can cause several environmental hazards. The optimization and immobilization of such photocatalysts for treatment after the catalytic process have thus attracted much attention. In this work, Ag/AgCl nanoparticles were immobilized by hydrothermal treatment on soybean knitted fabric. The photocatalytic activity of the resulting Ag/AgCl-functionalized soybean knitted fabric was estimated based on the reduction of the concentration of Acid Blue 260 dye. The response surface factorial design methodology was applied, varying the Ag/AgCl concentration, nanocatalyst immobilization time, and hydrothermal process temperature, to analyze the individual effect of and interaction between the variables, besides establishing a mathematical model of the process. The photocatalytic results showed that addition of Ag/AgCl to the fabric favored its use and reuse for the degradation of the Acid Blue 260 dye. The mathematical model together with the response surfaces showed that the residence time in the hydrothermal bath was the most significant variable in terms of the dye reduction, favoring this advanced treatment method.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    C. Hariharan, Appl. Catal. A Gen. 304, 55 (2006).

  2. 2.

    M. Hussain, R. Ceccarelli, D. Marchisio, D. Fino, N. Russo, and F. Geobaldo, Chem. Eng. J. 157, 45 (2010).

  3. 3.

    A.A. Ashkarran, A. Zad, M. Ahadian, and S.A. Mahdavi Ardakani, Nanotechnology 19, 195709 (2008).

  4. 4.

    H.K. Khattar, A.M. Jouda, and F. Alsaady, Nano Biomed. Eng. 4, 206 (2018).

  5. 5.

    H. Chun, T. Peng, H. Xuexiang, Y. Nie, X. Zhou, Q. Jiuhui, and H. He, J. Am. Chem. Soc. 132, 857 (2010).

  6. 6.

    Yu Ningxiang, H. Peng, L. Qiu, R. Wang, C. Jiang, T. Cai, Y. Sun, Y. Li, and H. Xiong, Int. J. Biol. Macromol. 141, 207 (2019).

  7. 7.

    C. Liu, Y.-b. Tang, P.-w. Huo, and F.-y. Chen, Mater. Lett. 257, 126708 (2019).

  8. 8.

    S. Sarina, E.R. Waclawik, and H. Zhu, Green Chem. 15, 1814 (2013).

  9. 9.

    X. Chen, Z. Zheng, X. Ke, E. Jaatinen, T. Xie, D. Wang, C. Guo, J. Zhao, and H. Zhu, Green Chem. 12, 414 (2010).

  10. 10.

    N.F. Andrade Neto, E. Longo, K.N. Matsui, C.A. Paskocimas, M.R.D. Bomio, and F.V. Motta, Plasmonics 14, 79 (2018).

  11. 11.

    X. Guan, Cellulose 26, 7437 (2019).

  12. 12.

    D. Zoufei, R. Guo, J. Lan, S. Jiang, S. Lin, C. Cheng, and L. Zhao, Surf. Coat. Technol. 319, 219 (2017).

  13. 13.

    F.A. Mohamed, N.F. Ali, and R. El-Mohamedy, Int. J. Curr. Microbiol. Appl. Sci. 4, 587 (2015).

  14. 14.

    C.C. Guaratini and M.V.B. Zanoni, Quim. Nova 23, 71 (2000).

  15. 15.

    J. Li, X. Binghan Zhang, Y.Y. Li, F. Shi, J. Guo, and Z. Gao, Int. J. Adhes. Adhes. 90, 15 (2019).

  16. 16.

    T.A. Takahashi, G. Nishimura, E. Carneiro, and L.A. Foerster, Rev. Bras. Entomol. 63, 199 (2019).

  17. 17.

    W. Cheikhrouhou, L. Kannous, A.M. Ferraria, A.M.B. do Rego, A. Kamoun, M.R. Vilar, and S. Boufi, Sol. Energy 183, 653 (2019).

  18. 18.

    L. Dai, R. Liu, H. Li-Qiu, and C.-L. Si, Carbohyd. Polym. 174, 450 (2017).

  19. 19.

    N.F. Andrade Neto, E. Longo, K.N. Matsui, C.A. Paskocimas, M.R.D. Bomio, and F.V. Motta, Plasmonics 14, 79 (2019).

  20. 20.

    D.L. Wood and J. Tauc, Phys. Rev. B 5, 3144 (1972).

  21. 21.

    N. Neto, L.M.P. Garcia, E. Longo, M. Li, C.A. Paskocimas, M.R.D. Bomio, and F.V. Motta, J. Mater. Sci.: Mater. Electron. 28, 12273 (2017).

  22. 22.

    Q. Jiahua, X. Wang, Y. Zhang, and G. Yuan, Sol. Energy 170, 124 (2018).

  23. 23.

    Y. Huo, Z. Wang, J. Zhang, C. Liang, and K. Dai, Appl. Surf. Sci. 459, 271 (2018).

  24. 24.

    P. Wang, Yu Chengde, J. Ding, X. Wang, and Yu Huogen, J. Alloys Compd. 752, 238 (2018).

  25. 25.

    Y. Zhu, R. Zhu, Y. Xi, X. Tianyuan, L. Yan, J. Zhu, G. Zhu, and H. He, Chem. Eng. J. 346, 567 (2018).

  26. 26.

    X. Yuxian, D. Lin, X. Liu, Y. Luo, H. Xue, B. Huang, Q. Qian, and Q. Chen, Mater. Lett. 215, 250 (2018).

  27. 27.

    D. Kumar, S. Singh, and N. Khare, Int. J. Hydrogen Energy 43, 8198 (2018).

  28. 28.

    N.F.A. Neto, Y.G. Oliveira, C.A. Paskocimas, M.R.D. Bomio, and F.V. Motta, J. Mater. Sci. Mater. Electron 22, 19052 (2018).

  29. 29.

    J.A. Donadelli, F.S.G. Einschlag, E. Laurenti, G. Magnacca, and L. Carlos, Colloids Surf. B Biointerfaces 161, 654 (2018).

  30. 30.

    G. Sharmila, R. SakthiPradeep, K. Sandiya, S. Santhiya, C. Muthukumaran, J. Jeyanthi, N. ManojKumar, and M. Thirumarimurugan, J. Mol. Struct. 1165, 288 (2018).

  31. 31.

    J.D. Rodney, S. Deepapriya, P.A. Vinosha, S. Krishnan, S.J. Priscilla, R. Daniel, and S.J. Das, Optik 161, 204 (2018).

  32. 32.

    M.P. Rao, P. Sathishkumar, R.V. Mangalaraja, A.M. Asiri, P. Sivashanmugam, and S. Anandan, J. Environ. Chem. Eng. 6, 2003 (2018).

  33. 33.

    A. Hosseinzadeh, S. Bidmeshkipour, Y. Abdi, E. Arzi, and S. Mohajerzadeh, Appl. Surf. Sci. 448, 71 (2018).

  34. 34.

    P. Lin, L. Meng, Y. Huang, L. Liu, and D. Fan, Appl. Surf. Sci. 324, 784 (2015).

  35. 35.

    K. Kalantari, M. Kalbasi, M. Sohrabi, and S.J. Royaee, Ceram. Int. 42, 14834 (2016).

  36. 36.

    B. Liu, Nanoscale 4, 7194 (2012).

  37. 37.

    S.D. Birajdar, R.C. Alange, S.D. More, V.D. Murumkar, and K.M. Jadhav, Procedia Manuf. 20, 174 (2018).

  38. 38.

    S. Husain, L.A. Alkhtaby, E. Giorgetti, A. Zoppi, and M.M. Miranda, J. Lumin. 145, 132 (2014).

  39. 39.

    S. Muthukumaran and R. Gopalakrishnan, Opt. Mater. 34, 1946 (2012).

  40. 40.

    Y. Guo, X. Cao, X. Lan, C. Zhao, X. Xue, and Y. Song, J. Phys. Chem. C 112, 8832 (2008).

  41. 41.

    L. Tolvaj, K. Mitsui, and D. Varga, Wood Sci. Technol. 45, 135 (2011).

  42. 42.

    K. Ding, W. Wang, Yu Dan, W. Wang, P. Gao, and B. Liu, Appl. Surf. Sci. 454, 101 (2018).

  43. 43.

    X. Yao, X. Liu, and H. Xiuli, ChemCatChem 6, 3409 (2014).

  44. 44.

    H. Darvishi, M.H. Khoshtaghaza, and S. Minaei, J. Saudi Soc. Agric. Sci. 14, 134 (2015).

  45. 45.

    P. Calza, P. Avetta, G. Rubulotta, M. Sangermano, and E. Laurenti, Chem. Eng. J. 239, 87 (2014).

  46. 46.

    Mohamad Mohsen Momeni, M. Hakimian, and A. Kazempour, Ceram. Int. 41, 13692 (2015).

  47. 47.

    H. Zhu, D. Chen, N. Li, X. Qingfeng, H. Li, J. He, and L. Jianmei, J. Colloid Interface Sci. 531, 11 (2018).

  48. 48.

    Z. Zeng, S. Chen, T.T.Y. Tan, and F.-X. Xiao, Catal. Today 315, 171 (2018).

  49. 49.

    F. Li, Z. Li, Y. Cai, M. Zhang, Y. Shen, and W. Wang, Mater. Lett. 208, 111 (2017).

  50. 50.

    H. Cuicui, L. Lu, Y. Zhu, R. Li, and Y. Xing, Mater. Chem. Phys. 217, 182 (2018).

  51. 51.

    B.P. Reddy, M.C. Sekhar, B.P. Prakash, Y. Suh, and S.-H. Park, Ceram. Int. 7, 3595 (2018).

  52. 52.

    N. Zhong, M. Chen, Y. Luo, Z. Wang, X. Xin, and B.E. Rittmann, Chem. Eng. J. 355, 731 (2019).

  53. 53.

    A.I. Khuri and J.A. Cornell, J. Miner. Mater. Charact. Eng. 11, 543 (1996).

  54. 54.

    Z. Tahmasebi, S.S.H. Davarani, and A.A. Asgharinezhad, Biosensors Bioelectron. 114, 66 (2018).

  55. 55.

    I. Papailias, M. Giannouri, A. Trapalis, N. Todorova, T. Giannakopoulou, N. Boukos, and C. Lekakou, Appl. Surf. Sci. 358, 84 (2015).

Download references

Acknowledgments

This study was partially financed by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior–Brasil (CAPES/PROCAD)–Finance Code 2013/2998/2014. The authors thank the Brazilian research financing institution CNPq for financial support (No. 307546/2014).

Author information

Correspondence to N. F. Andrade Neto.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 183 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Neto, N.F.A., Cabral, R.L.B., Santiago, A.A.G. et al. Study of Photocatalytic Properties of Ag/AgCl-Decorated Soybean Protein Knitting Fabric Against Acid Blue 260 Dye by Factorial Design. Journal of Elec Materi 49, 2118–2129 (2020). https://doi.org/10.1007/s11664-019-07904-1

Download citation

Keywords

  • AgCl
  • soybean protein
  • fabric
  • photocatalytic
  • waste treatment
  • dye