Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Fabrication of Attapulgite/Multi-walled Carbon Nanotube Aerogels As Anode Material for Lithium Ion Batteries

  • 17 Accesses

Abstract

Porous silica-based anode materials with high theoretical specific capacity and abundant reserves have attracted popular attention for application in lithium ion batteries (LIBs). However, poor electrochemical conductivity and mechanical performance hinder the development of silica-based anode materials. In this work, attapulgite/multi-walled carbon nanotube (AT/CNT) composite anode materials were prepared. The structural features of AT/CNT composite aerogels were characterized by field emission scanning electron microscopy (FESEM), energy dispersive spectroscopy (EDS), x-ray diffraction (XRD) and Brunauer–Emmett–Teller (BET). because of the excellent conductivity and porous pathways of AT/CNT anode material, the reversible specific capacity of AT/CNTs containing 0.5 wt.% CNTs (AT-0.5) with a mass loading of 0.67 mg cm−2 was 303.6 mAh g−1 at 0.1 A g−1 after 50 cycles, and a coulombic efficiency of AT-0.5 was 99.1%. The green LEDs were lit by the assembled battery of AT-0.5. The electrochemical results demonstrated that AT/CNT anode materials possessed practical application values for energy storage. Moreover, the preparation method of AT/CNT anode materials is efficient and environmentally friendly.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    B.H. Park, J.H. Jeong, G.W. Lee, Y.H. Kim, K.C. Roh, and K.B. Kim, J. Power Sources 394, 94 (2018).

  2. 2.

    W. Tang, X. Guo, X. Liu, G. Chen, H. Wang, N. Zhang, J. Wang, G. Qiu, and R. Ma, Appl. Clay Sci. 162, 499 (2018).

  3. 3.

    H. Wan, H. Xiong, X. Liu, G. Chen, N. Zhang, H. Wang, R. Ma, and G. Qiu, Dalton T. 47, 7522 (2018).

  4. 4.

    Y. Lan and D. Chen, J. Mater. Sci. Mater. Electr. 29, 19873 (2018).

  5. 5.

    W. An, B. Xiang, J. Fu, S. Mei, S. Guo, K. Huo, X. Zhang, B. Gao, and P.K. Chu, Appl. Clay Sci. 479, 896 (2019).

  6. 6.

    Y. Yang, X. Yang, S. Chen, M. Zou, Z. Li, A. Cao, and Q. Yuan, ACS Appl Mater. Interfaces 9, 22819 (2017).

  7. 7.

    Q. Xiao, Y. Fan, X. Wang, R.A. Susantyoko, and Q. Zhang, Energy Environ. Sci. 7, 655 (2014).

  8. 8.

    C. Shi, K. Xiang, Y. Zhu, X. Chen, W. Zhou, and H. Chen, Electrochim. Acta 246, 1088 (2017).

  9. 9.

    L. Sun, H. Si, Y. Zhang, Y. Shi, K. Wang, J. Liu, and Y. Zhang, J. Power Sources 415, 126 (2019).

  10. 10.

    Z. Pan, H. Sun, J. Pan, J. Zhang, B. Wang, and H. Peng, Carbon 133, 384 (2018).

  11. 11.

    Y. Wang, Y. Zhang, H. Li, Y. Peng, J. Li, J. Wang, B.J. Hwang, and J. Zhao, Chem. Eng. J. 332, 49 (2018).

  12. 12.

    Y. Zhu and D. Chen, Mater. Design 113, 60 (2017).

  13. 13.

    Y. Lan and D. Chen, J. Mater. Sci. 53, 2054 (2017).

  14. 14.

    A. Abnavi, M. Sadati Faramarzi, A. Abdollahi, R. Ramzani, S. Ghasemi, and Z. Sanaee, Nanotechnology 28, 255404 (2017).

  15. 15.

    X. Feng, J. Yang, Y. Bie, J. Wang, Y. Nuli, and W. Lu, Nanoscale 6, 12532 (2014).

  16. 16.

    Y. Zhu and D. Chen, Ceram. Int. 44, 15873 (2018).

  17. 17.

    T. Xu, D. Wang, P. Qiu, J. Zhang, Q. Wang, B. Xia, and X. Xie, Nanoscale 10, 16638 (2018).

  18. 18.

    D. Gao, Y. Zhang, B. Lyu, P. Wang, and J. Ma, Carbohyd. Polym. 206, 245 (2019).

  19. 19.

    C. Zhijiang, Z. Cong, X. Ping, G. Jie, and Z. Kongyin, J. Mater. Sci. 53, 14801 (2018).

  20. 20.

    L. Boudriche, R. Calvet, B. Hamdi, and H. Balard, Colloid. Surface. A 399, 1 (2012).

  21. 21.

    P.M. Ette, K. Selvakumar, S.M. Senthil Kumar, and K. Ramesha, Electrochim. Acta 292, 532 (2018).

  22. 22.

    G. Hu, Z. Gan, Y. Cao, K. Du, Y. Du, and Z. Peng, Electrochim. Acta 292, 502 (2018).

  23. 23.

    Y. He, K. Xiang, W. Zhou, Y. Zhu, X. Chen, and H. Chen, Chem. Eng. J. 353, 666 (2018).

  24. 24.

    M. Greenleaf, H. Li, and J.P. Zheng, J. Power Sources 270, 113 (2014).

  25. 25.

    Y. Zhang, Y. Pan, Y. Chen, B.L. Lucht, and A. Bose, Carbon 112, 72 (2017).

  26. 26.

    X. Zhou, L. Wu, J. Yang, J. Tang, L. Xi, and B. Wang, J. Power Sources 324, 33 (2016).

  27. 27.

    Q. Chen, S. Liu, R. Zhu, D. Wu, H. Fu, J. Zhu, and H. He, J. Power Sources 405, 61 (2018).

  28. 28.

    Z. Li, Q. He, L. He, P. Hu, W. Li, H. Yan, X. Peng, C. Huang, and L. Mai, J. Mater. Chem. A 5, 4183 (2017).

  29. 29.

    J. Lu, F. Lian, L. Guan, Y. Zhang, and F. Ding, J. Mater. Chem. A 7, 991 (2019).

Download references

Acknowledgments

This work was supported by the Fundamental Research Funds for the Central Universities (CUSF-DH-D-2018014).

Author information

Correspondence to Dajun Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 181 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lan, Y., Chen, D. Fabrication of Attapulgite/Multi-walled Carbon Nanotube Aerogels As Anode Material for Lithium Ion Batteries. Journal of Elec Materi 49, 2058–2065 (2020). https://doi.org/10.1007/s11664-019-07895-z

Download citation

Keywords

  • Anode material
  • lithium ion battery
  • attapulgite
  • carbon nanotubes