Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Effects of External Magnetic Fields on Optical Properties of an Oxide Quantum Dot Using the Smorodinsky–Winternitz Potential

  • 11 Accesses

Abstract

The effects of a magnetic field and geometrical confinement on the ground-state energy of an exciton and the optical gain in a CdO/ZnO spherical core/shell quantum dot have been investigated using the Smorodinsky–Winternitz potential. The impact of the dielectric constant discontinuity at the nanostructure boundaries is included, as well as the built-in internal fields comprising the spontaneous and piezoelectric polarizations within the heterostructure. Numerical calculations are carried out to obtain the exciton energy using the variational formalism within the single-band effective-mass approximation, whereas the optical properties are found using the compact density matrix method. The magnetic-field-induced oscillator strength and the transition lifetime of the exciton are investigated as functions of the dot radius in the core/shell quantum dot. The normalized optical matrix elements and the optical gain as a function of the carrier density in the presence of a magnetic field strength are studied. The results reveal that the exciton energy is insensitive to the magnetic field in the strong geometrical confinement region. The optical matrix elements increase with the charge carrier screening for all the magnetic field strengths, and this effect can be applied to improve the optical gain.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    S. Xu, S. Kumar, and T. Nann, J. Am. Chem. Soc. 128, 1054 (2006).

  2. 2.

    X. Zhong, R. Xie, Y. Basche, T. Zhang, and W. Knoll, Chem. Mater. 17, 4038 (2005).

  3. 3.

    S. Baskoutas, E. Paspalakis, and A.F. Terzis, Phys. Rev. B 74, 153306 (2006).

  4. 4.

    İ. Karabulut, Ü. Atav, H. Şafak, and M. Tomak, Eur. Phys. J. B 55, 282 (2007).

  5. 5.

    A. Özmen, Y. Yakar, B. Çakir, and Ü. Atav, Opt. Commun. 282, 3999 (2009).

  6. 6.

    B. Chen, K.-X. Guo, Z.-L. Liu, R.-Z. Wang, Y.-B. Zheng, and B. Li, J. Phys.: Condens. Matter 20, 255214 (2008).

  7. 7.

    M.G. Barseghyan, C.A. Duque, E.C. Niculescu, and A. Radu, Superlattices Microstruct. 66, 10 (2014).

  8. 8.

    W.U. Huynh, J.J. Dittmer, and A.P. Alivisatos, Science 295, 2425 (2002).

  9. 9.

    R.D. Schaller and V.I. Klimov, Phys. Rev. Lett. 92, 186601 (2004).

  10. 10.

    J. El Khamkhami, E. Feddi, E. Assaidc, F. Dujardind, B. Stébé, and J. Diouri, Physica E 15, 99 (2002).

  11. 11.

    P.V. Kamat, J. Phys. Chem. C 112, 18737 (2008).

  12. 12.

    L. Shi and Z.-W. Ya, Int. J. Mod. Phys. B 33, 195013 (2019).

  13. 13.

    L. Lu, W. Xie, and Z. Shu, Phys. B 406, 3735 (2011).

  14. 14.

    N. Aghoutane, M. El-Yadri, A. El Aouami, E. Feddi, F. Dujardin, M. El Haouari, C.A. Duque, C.V. Nguyen, and H.V. Phuc, Appl. Phys. A 125, 17 (2019).

  15. 15.

    M. El Haouari, A. Talbi, E. Feddi, H. El Ghazi, A. Oukerroume, and F. Dujardin, Opt. Commun. 383, 231 (2017).

  16. 16.

    Z. Zeng, C.S. Garoufalis, A.F. Terzis, and S. Baskoutas, J. Appl. Phys. 114, 023510 (2013).

  17. 17.

    Z. Zeng, C.S. Garoufalis, and S. Baskoutas, J. Nanoelectron. Optoelectron. 11, 615 (2016).

  18. 18.

    N. Aghoutane, M. El-Yadri, A. El Aouami, E. Feddi, G. Long, M. Sadoqi, F. Dujardin, C.V. Nguyen, N.N. Hieu, and H.V. Phuc, MRS Commun. 9, 663 (2019).

  19. 19.

    G.V.B. de Souza and A. Bruno-Alfonso, Physica E 66, 128 (2015).

  20. 20.

    A. Chafai, I. Essaoudi, A. Ainane, F. Dujardin, and R. Ahuja, Chin. J. Phys. 57, 189 (2019).

  21. 21.

    V.A. Holovastky, O.M. Voitsekhiska, and M.Y. Yakhnevych, Superlattices Microstruct. 116, 9 (2018).

  22. 22.

    H. Taş and M. şahin, J. Appl. Phys. 112, 053717 (2012).

  23. 23.

    G. Allan, C. Delerue, M. Lannoo, and E. Martin, Phys. Rev. B 52, 11982 (1995).

  24. 24.

    M. Cristea and E.C. Niculescu, Eur. Phys. J. B 85, 191 (2012).

  25. 25.

    P.C. Lily Jasmine, A.J. Peter, and C.W. Lee, Chem. Phys. 452, 40 (2015).

  26. 26.

    P. Winternitz, Y.A. Smorodinsk y, M. Uhlir, and I. Fris, J. Nucl. Phys. 4, 444 (1967).

  27. 27.

    A. Deyasi, S. Bhattacharyya, and N.R. Das, Superlattices Microstruct. 6, 414 (2013).

  28. 28.

    M. Jin and W. Xie, Superlattices Microstruct. 73, 330 (2014).

  29. 29.

    N. Karthikeyan and A. John Peter, J. Nanophotonics 13, 036008-1-11 (2019).

  30. 30.

    J.L. Movilla and J. Planelles, Comput. Phys. Commun. 170, 144 (2005).

  31. 31.

    W. Xie, Physica B 358, 109 (2005).

  32. 32.

    C.H. Wang, T.T. Chen, Y.F. Chen, M.L. Ho, C.W. Lai, and P.T. Chou, Nanotechnology 19, 115702 (2008).

  33. 33.

    F. Rajadell, J.I. Climente, J. Planelles, and A. Bertoni, J. Phys. Chem. C 113, 11268 (2009).

  34. 34.

    M. Gong, W. Zhang, G.C. Guo, and L. He, Appl. Phys. Lett. 99, 231106 (2011).

  35. 35.

    B. Alen, J. Bosch, D. Granados, J. Martinez-Pastor, J.M. Garcia, and L. Gonzalez, Phys. Rev. B 75, 045319 (2007).

  36. 36.

    D. Bimberg, M. Grundmann, and N.N. Ledentsov, Quantum Dot Heterostructure (New York: Wiley, 1999).

  37. 37.

    S.H. Park, W.P. Hong, and J.J. Kim, Sol. Stat. Commun. 261, 21 (2017).

  38. 38.

    K. Luhluh Jahan, A. Boda, I.V. Shankar, C.N. Raju, and A. Chatterjee, Sci. Rep. 8, 5073 (2018).

  39. 39.

    Y. Yakar, B. Çakır, and A. Özmen, Chem. Phys. Lett. 708, 138 (2018).

  40. 40.

    M.P. Telenkov, Y. Mityagin, T.N.V. Doan, and K.K. Nagaraja, J. Phys. Commun. 2, 085019 (2018).

  41. 41.

    T. Shelawati, M.S. Nurisya, C. Kar Tima, and A.K. Mazliana, Superlattices Microstruct. 131, 95 (2019).

  42. 42.

    A.M. Mercado, J. Sierra-Ortega, L.F. Garcia, and I.D. Mikhailov, J. Phys: Conf. Ser. 1219, 012015 (2019).

  43. 43.

    J. Ciers, G. Jacopin, G. Callsen, C. Bougerol, J.-F. Carlin, R. Butté, and N. Grandjean, Jpn. J. Appl. Phys. 57, 090305 (2018).

  44. 44.

    S. Chen and A. Nurmikko, Optica 5, 1141 (2018).

  45. 45.

    S. Adachi, Properties of Semiconductor Alloys Group-IV, III–V and II–VI Semiconductors (New York: Wiley, 2009).

  46. 46.

    P. Gopal and N.A. Spaldin, J. Electron. Mater. 35, 538 (2006).

Download references

Author information

Correspondence to A. John Peter or Chang Woo Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Peter, A.J., Karthikeyan, N. & Lee, C.W. Effects of External Magnetic Fields on Optical Properties of an Oxide Quantum Dot Using the Smorodinsky–Winternitz Potential. Journal of Elec Materi 49, 2257–2264 (2020). https://doi.org/10.1007/s11664-019-07892-2

Download citation

Keywords

  • Oscillator strength
  • confinement
  • exciton