Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

The Design and Preparation of Transparent Hybrid Composite Thin Films with Excellent Optical Properties and Improved Thermal Insulation by Optimized Combination of Nanomaterials


For a single nano-optical material, it is difficult to possess high transmittance and adequately filter ultraviolet (UV) and infrared radiation (IR) simultaneously. Consequently, hybrid nano-optical materials comprising components of appropriate proportions for superimposing serviceable optical property are required. The design, optimization and processing of new composite blends with an aim to creating defect free thin films is far from a trivial endeavor. In this report, optimum composition and optical properties of hybrid nano-optical material has been determined and improved by crossover matching experiments and ball milling, respectively. Film preparation has been optimized to reduce defects expressed as cracks, tiny bubbles, strips, groove points, corrugation, and formation of acicular fibers by regulating proportion of polyvinyl butyral colloid and dry film processes. Two ameliorative processing conditions are exemplified where the resultant composite films possessed 86% maximum transmittance in the visible range and 90% and 50% blocking rate with respect to the IR and UV bands.


  1. 1.

    K. Lundgren and T. Kjellstrom, Sustainability 5, 3116 (2013).

  2. 2.

    A. Lopez, L. Sanchez, F. Doctor, H. Hagras, and V. Callaghan, IEEE Int. Conf. 1–7, 42 (2004).

  3. 3.

    G. Ramírez-Díaz, V. Nadal-Mora, and J. Piechocki, Renew. Sust. Energy Rev. 51, 138 (2015).

  4. 4.

    Y.Z. Lu, B. Zhu, J. Wang, Y.M. Zhang, and J.J. Li, Int. J. Energy Res. 40, 717 (2016).

  5. 5.

    M.M. Kabir and D.E. Demirocak, Int. J. Energy Res. 41, 1963 (2017).

  6. 6.

    A.M. Omer, Renew. Sust. Energy Rev. 12, 2265 (2008).

  7. 7.

    H.W. He, H. Jia, W.W. Huo, and M. Yan, Energy Procedia 105, 2518 (2017).

  8. 8.

    Y. Song, S. Wu, and Y.Y. Yan, Int. J. Low. Carbon Technol. 10, 305 (2015).

  9. 9.

    B.P. Jelle, A. Gustavsen, and R. Baetens, J. Build. Phys. 34, 99 (2010).

  10. 10.

    C.S. Long, H.H. Lub, D.F. Lii, and J.L. Huang, Surf. Coat. Technol. 284, 75 (2015).

  11. 11.

    F. Shi, J.X. Liu, X.L. Dong, Q. Xu, J.Y. Lou, and H.C. Ma, J. Mater. Sci. Technol. 30, 342 (2014).

  12. 12.

    L.H. Xiao, Y.C. Su, X.Z. Zhou, H.Y. Chen, J. Tan, T. Hu, J. Yan, and P. Peng, Appl. Phys. Lett. 101, 041913 (2012).

  13. 13.

    Y. Wua, L. Zhang, G.H. Min, H.S. Min, B.H. Gao, H.H. Liu, S.L. Xing, and T. Pang, Appl. Surf. Sci. 384, 413 (2016).

  14. 14.

    X.M. Luo, P. Zhang, R. Liu, W.H. Li, B.H. Ge, and M. Cao, Polym. Int. 65, 415 (2016).

  15. 15.

    S. Dubin, S. Gilje, K. Wang, V.C. Tung, K. Cha, A.S. Hall, J. Farrar, R. Varshneya, Y. Yang, and R.B. Kaner, ACS Nano 4, 3845 (2010).

  16. 16.

    G.J. Zhang, Z.H. Chen, X.R. Zeng, F. Yu, and J. Wang, J. Coat. Technol. Res. 8, 505 (2011).

  17. 17.

    H. Huang, M.H. Ng, Y.L. Wu, and L.B. Kong, Mater. Des. 88, 384 (2015).

  18. 18.

    S. Ray, U. Dutta, R. Das, and P. Chatterjee, J. Phys. D Appl. Phys. 40, 2445 (2007).

  19. 19.

    H.F. Zhou, H. Wang, X.Y. Tian, K. Zheng, Z.F. Wu, X. Ding, and X.Z. Ye, Compos. Sci. Technol. 94, 105 (2014).

  20. 20.

    T. Hu, Y.C. Su, S.D. Liu, H.B. Tang, S.J. Mu, and Z.X. Hu, Appl. Phys. A-Mater. 116, 1951 (2014).

  21. 21.

    T. Hu, Y.C. Su, I.R. Baxendale, J. Tan, H.B. Tang, L.H. Xiao, F. Zheng, and P. Ning, Curr. Appl. Phys. 17, 584 (2017).

  22. 22.

    H. Gliemann, A.T. Almeida, D.F.S. Petri, and T. Schimmel, Surf. Interface Anal. 39, 1 (2007).

  23. 23.

    B.H. Liu, J. Xu, and Y.B. Li, Adv. Mater. Sci. Eng. 16, 1 (2014).

  24. 24.

    S. Foghmoes, F. Teocoli, K. Brodersen, T. Klemenso, and M.D. Negra, J. Eur. Ceram. Soc. 36, 3441 (2016). https://doi.org/10.1016/j.jeurceramsoc.2016.05.043.

  25. 25.

    Y.V. Kuznetsova and A.A. Rempel, Inorg. Mater. 51, 215 (2015).

  26. 26.

    O. Prakash and A. Moitra, Comput. Mater. Sci. 295–297, 2615 (2011).

  27. 27.

    T.T. Liu, H. Luo, and J. Ma, Eur. Phys. J. E 39, 24 (2016).

  28. 28.

    P.K. Giri, S. Bhattacharyya, D.K. Singh, R. Kesavamoorthy, B.K. Panigrahi, and K.G.M. Nair, J. Appl. Phys. 102, 093515 (2007).

Download references

Author information

Correspondence to Te Hu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hu, T., Su, Y., Baxendale, I.R. et al. The Design and Preparation of Transparent Hybrid Composite Thin Films with Excellent Optical Properties and Improved Thermal Insulation by Optimized Combination of Nanomaterials. Journal of Elec Materi 49, 1808–1818 (2020). https://doi.org/10.1007/s11664-019-07888-y

Download citation


  • Nano-optical materials
  • transparent thermal insulation
  • composite functional thin film
  • optical property
  • ball milling
  • colloid
  • film defect