Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Morphology and Dielectric Studies of Natural Fibers and PbO2 Based Flexible Composite Sheets for Potential Energy Storage Applications

  • 42 Accesses


In this modern age of technology, flexible, light-weight, environment-friendly and low-cost electrodes are vastly feasible for applications in energy storage devices and disposable electronics. This study presents a comprehensive report on the morphological, dielectric, and impedance characteristics of lignocellulose (LC) fibers, PbO2, and LC/PbO2 sheets. The dielectric analysis shows that the dielectric constant depends on space charge polarization in the case of LC/PbO2 composite sheets. It can be concluded from impedance spectroscopy results that LC fibers show semiconductor-like behavior and fibers appear to consist of one type of dielectric species whose impedance behavior can be modeled by a parallel combination of a resistor and a capacitor. However, the impedance response of PbO2 consists of two types of dielectric species, which can be identified as grains and grain boundaries, both of which show a small temperature dependence. The impedance behavior of LC/PbO2 composite is different in comparison to individual LC fibers and PbO2. The presented study also reveals that impedance parameters of fabricated LC/PbO2 composites are temperature-independent, which might be due to counteracting the characteristics of LC fibers and PbO2 particles. This temperature-independence of the composite is important for their use in applications in flexible devices.

This is a preview of subscription content, log in to check access.


  1. 1.

    S. Peng, L. Li, J.K.Y. Lee, L. Tian, M. Srinivasan, S. Adams, and S. Ramakrishna, Nano Energy 22, 361 (2016).

  2. 2.

    R.F. Service, Science (New York, NY) 301, 909 (2003).

  3. 3.

    B.C.K. Tee, C. Wang, R. Allen, and Z. Bao, Nat. Nanotechnol. 7, 825 (2012).

  4. 4.

    Z. Fan, H. Razavi, J. Do, A. Moriwaki, O. Ergen, Y.-L. Chueh, P.W. Leu, J.C. Ho, T. Takahashi, and L.A. Reichertz, Nat. Mater. 8, 648 (2009).

  5. 5.

    M.C. McAlpine, H. Ahmad, D. Wang, and J.R. Heath, Nat. Mater. 6, 379 (2007).

  6. 6.

    L. Huang, G. Bai, M. Wong, Z. Yang, W. Xu, and J. Hao, Adv. Mater. 28, 2744 (2016).

  7. 7.

    B. Yao, L. Huang, J. Zhang, X. Gao, J. Wu, Y. Cheng, X. Xiao, B. Wang, Y. Li, and J. Zhou, Adv. Mater. 28, 6353 (2016).

  8. 8.

    L. Hu, J.W. Choi, Y. Yang, S. Jeong, F. La Mantia, L.-F. Cui, and Y. Cui, Proc. Natl. Acad. Sci. 106, 21490 (2009).

  9. 9.

    L. Yuan, B. Yao, B. Hu, K. Huo, W. Chen, and J. Zhou, Energy Environ. Sci. 6, 470 (2013).

  10. 10.

    B. Yao, L. Yuan, X. Xiao, J. Zhang, Y. Qi, J. Zhou, J. Zhou, B. Hu, and W. Chen, Nano Energy 2, 1071 (2013).

  11. 11.

    X. Ji, K.T. Lee, and L.F. Nazar, Nat. Mater. 8, 500 (2009).

  12. 12.

    Q. Liu, L. Li, J. Xu, Z. Chang, D. Xu, Y. Yin, X. Yang, T. Liu, Y. Jiang, and J. Yan, Adv. Mater. 27, 8095 (2015).

  13. 13.

    G. Zhou, F. Li, and H.-M. Cheng, Energy Environ. Sci. 7, 1307 (2014).

  14. 14.

    J. Zhu, S. Tang, J. Wu, X. Shi, B. Zhu, and X. Meng, Adv. Energy Mater. 7, 1601234 (2017).

  15. 15.

    B. Scrosati, Nature 373, 557 (1995).

  16. 16.

    J.-M. Tarascon and M. Armand, in Mater. Sustain. Energy A Collect. Peer-Reviewed Res. Rev. Artic. from Nat. Publ. Gr. (World Scientific, 2011), pp. 171–179.

  17. 17.

    F.M. Al-Oqla, O.Y. Alothman, M. Jawaid, S.M. Sapuan, and M.H. Es-Saheb, Biomass and Bioenergy, ed. K.R. Hakeem, M. Jawaid, and U. Rashi (New York: Springer, 2014), pp. 1–25.

  18. 18.

    F.M. Al-Oqla and S.M. Sapuan, J. Clean. Prod. 66, 347 (2014).

  19. 19.

    F.M. Al-Oqla, S.M. Sapuan, T. Anwer, M. Jawaid, and M.E. Hoque, Synth. Met. 206, 42 (2015).

  20. 20.

    F.M. Al-Oqla, S.M. Sapuan, M.R. Ishak, and A.A. Nuraini, Int. J. Polym. Anal. Charact. 20, 191 (2015).

  21. 21.

    A.A.A. Darwish, E.F.M. El-Zaidia, M.M. El-Nahass, T.A. Hanafy, and A.A. Al-Zubaidi, J. Alloys Compd. 589, 393 (2014).

  22. 22.

    S. Pandey, D. Kumar, O. Parkash, and L. Pandey, in Ceram. Mater.Synth. Charact. Appl. Recycl. (IntechOpen, 2019).

  23. 23.

    L. Pandey, O.M. Parkash, R.K. Katare, and D. Kumar, Bull. Mater. Sci. 18, 563 (1995).

Download references

Author information

Correspondence to M. Naveed-Ul-Haq or Aamir Razaq.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Raza, A., Faizan, M., Sultana, I. et al. Morphology and Dielectric Studies of Natural Fibers and PbO2 Based Flexible Composite Sheets for Potential Energy Storage Applications. Journal of Elec Materi 49, 1896–1903 (2020). https://doi.org/10.1007/s11664-019-07877-1

Download citation


  • PbO2
  • lignocelluloses fibers
  • impedance analysis
  • dielectric studies
  • energy storage