Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Agarose@MgO Composite Tablet for Heavy Metal Removal From Acid Sulfate Water

Abstract

Agarose-MgO composite was used as sorbents for the removal of iron from aqueous solution. The composite was synthesized by entrapping MgO nanoparticles in the porous structure of cylinder agarose tablets. The adsorption of iron was investigated under various initial concentrations of ion aqueous solution, time of contact, concentration of initial materials, ions in individual and miscellaneous solutions. The concentration of ion in aqueous solution was determined by inductively coupled plasma optical emission spectrometry. The adsorption capacity of Fe(III) by agarose@MgO composite tablet was 275 mg g−1. In individual aqueous solution, the adsorption efficiency follows the order Fe(III) > Al(III) > As(V). In contrast, high adsorption of As(V) diminished the adsorption activity of Fe(III) and Al(III) in multi-component solution. As a result, agarose@MgO composite tablets would be a promising candidate for water treatment.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    C.K. Mbamba, D.J. Batstone, X. Flores-Alsina, and S. Tait, Water Res. 68, 342 (2015).

  2. 2.

    A. Keränen, T. Leiviskä, B.-Y. Gao, O. Hormi, and J. Tanskanen, Chem. Eng. Sci. 98, 59 (2013).

  3. 3.

    Y.X. Zhang and Y. Jia, J. Colloid Interface Sci. 510, 407 (2018).

  4. 4.

    R.C. Maheshwari, J. Hazard. Mater. 137, 456 (2006).

  5. 5.

    Y.K. Ong, F.Y. Li, S.-P. Sun, B.-W. Zhao, C.-Z. Liang, and T.-S. Chung, Chem. Eng. Sci. 114, 51 (2014).

  6. 6.

    S.-A. Schmidt, E. Gukelberger, M. Hermann, F. Fiedler, B. Großmann, J. Hoinkis, A. Ghosh, D. Chatterjee, and J. Bundschuh, J. Hazard. Mater. 318, 671 (2016).

  7. 7.

    K. Fominykh, J.M. Feckl, J. Sicklinger, M. Döblinger, S. Böcklein, J. Ziegler, L. Peter, J. Rathousky, E.-W. Scheidt, and T. Bein, Fattakhova-Rohlfing D 24, 3123 (2014).

  8. 8.

    M. Visa, Powder Technol. 294, 338 (2016).

  9. 9.

    S.P. Suriyaraj and R. Selvakumar, RSC Adv. 6, 10565 (2016).

  10. 10.

    A.I.A. Sherlala, A.A.A. Raman, M.M. Bello, and A. Asghar, Chemosphere 193, 1004 (2018).

  11. 11.

    Y. Cai, C. Li, D. Wu, W. Wang, F. Tan, X. Wang, P.K. Wong, and X. Qiao, Chem. Eng. J. 312, 158 (2017).

  12. 12.

    K.Y. Kumar, H.B. Muralidhara, Y.A. Nayaka, J. Balasubramanyam, and H. Hanumanthappa, Powder Technol. 246, 125 (2013).

  13. 13.

    S. Mahdavi, M. Jalali, and A. Afkhami, Chem. Eng. Commun. 200, 448 (2013).

  14. 14.

    J. Wu, H. Yan, X. Zhang, L. Wei, X. Liu, and B. Xu, J. Colloid Interface Sci. 324, 167 (2008).

  15. 15.

    M.A. Alavi and A. Morsali, Ultrason. Sonochem. 17, 441 (2010).

  16. 16.

    Y. An, K. Zhang, F. Wang, L. Lin, and H. Guo, Desalination 281, 30 (2011).

  17. 17.

    P. Lei, F. Wang, X. Gao, Y. Ding, S. Zhang, J. Zhao, S. Liu, and M. Yang, J. Hazard. Mater. 227–228, 185 (2012).

  18. 18.

    N.X.D. Mai, J. Bae, I.T. Kim, S.H. Park, G.-W. Lee, J.H. Kim, D. Lee, H.B. Son, Y.-C. Lee, and J. Hur, Environ. Sci. Nano 4, 955 (2017).

  19. 19.

    J.H. Pan, Z. Lei, W.I. Lee, Z. Xiong, Q. Wang, and X.S. Zhao, Catal. Sci. Technol. 2, 147 (2012).

  20. 20.

    P. Fu, Y. Luan, and X. Dai, J. Mol. Catal. A: Chem. 221, 81 (2004).

  21. 21.

    N.X.D. Mai, D. Park, J. Yoon, and J. Hur, J. Nanosci. Nanotechnol. 18, 1361 (2018).

  22. 22.

    L. Ge, W. Wang, Z. Peng, F. Tan, X. Wang, J. Chen, and X. Qiao, Powder Technol. 326, 393 (2018).

  23. 23.

    S.-H. Teng, P. Wang, and H.-E. Kim, Mater. Lett. 63, 2510 (2009).

  24. 24.

    M. Rezaei, M. Khajenoori, and B. Nematollahi, Powder Technol. 205, 112 (2011).

  25. 25.

    G. Song, S. Ma, G. Tang, and X. Wang, Colloids Surf. A 364, 99 (2010).

  26. 26.

    Z. Li, Y. Wang, N. Wu, Q. Chen, and K. Wu, Environ. Sci. Pollut. Res. Int. 20, 1511 (2013).

  27. 27.

    A.E.-H. Ali, H.A. Shawky, H.A. Abd-El-Rehim, and E.A. Hegazy, Eur. Polym. J. 39, 2337 (2003).

  28. 28.

    R.R. Devi, I.M. Umlong, B. Das, K. Borah, A.J. Thakur, P.K. Raul, S. Banerjee, and L. Singh, Appl. Water Sci. 4, 175 (2014)

  29. 29.

    A.-S.A. Bakr, Y.M. Moustafa, E.A. Motawea, M.M. Yehia, and M.M.H. Khalil, J. Environ. Chem. Eng. 3, 1486 (2015).

  30. 30.

    S. Tresintsi, K. Simeonidis, M. Katsikini, E.C. Paloura, G. Bantsis, and M. Mitrakas, J. Hazard. Mater. 265, 217 (2014).

  31. 31.

    I.H. Chowdhury, A.H. Chowdhury, P. Bose, S. Mandal, and M.K. Naskar, RSC Adv. 6, 6038 (2016).

Download references

Acknowledgments

The work was supported by Grants from Vietnam National University Ho Chi Minh City Grant Number C2018-50-01. The authors would like to thank the Lab of Multifunctional Material and Central Analysis Laboratory, University of Science, Vietnam National University Ho Chi Minh City for freeze-drying our samples and ICP-OES measurments.

Author information

Correspondence to Bach Thang Phan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 275 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mai, N.X.D., Le, T.A.C., Doan, T.L. et al. Agarose@MgO Composite Tablet for Heavy Metal Removal From Acid Sulfate Water. Journal of Elec Materi 49, 1857–1863 (2020). https://doi.org/10.1007/s11664-019-07872-6

Download citation

Keywords

  • Agarose
  • MgO
  • composite
  • heavy metals removal
  • acid sulfate water treatment