Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Investigation of the Factors Influencing the Surface-Enhanced Raman Scattering Activity of Silver Nanoparticles

  • 30 Accesses

Abstract

Surface-enhanced Raman scattering (SERS) is one of the most effective methods for applications in optical sensors and chemical analysis. However, control of the optimal conditions of substrates and the selection of chemical probes are two major challenges which have yet to be solved. In this work, using a simple seeded growth method, nanoparticles with different sizes and shapes were produced. The SERS enhancement factor for each nanoparticle size and shape obtained was evaluated based on three different analytes, methylene blue, Nile blue A and Rhodamine B. We found a maximum enhancement factor on the order of 106 for the case of silver nanorods and Rhodamine B. Considering the SERS performance for silver nanospheres, we observed a systematic increase in the sequence methylene blue-Nile blue A-Rhodamine B. The reason behind the enhanced efficiency is that the maximum of the surface plasmon resonance band of Rhodamine B is the closest to the Raman excitation wavelength. The study also demonstrates that a decrease in size of spherical nanoparticles can lead to an increased enhancement, resulting from a larger surface area for a smaller particle size. Compared with silver nanospheres, silver nanorods yielded a better SERS enhancement factor, as a result of shape anisotropy which significantly enhance the local field hotspots. For low concentration, the intensity of Raman bands increases linearly with increasing dye concentration, which could be useful for applications involving chemical sensors.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    N. Guillot and M.L. de la Chapelle, J. Quant. Spectrosc. Radiat. Transf. 113, 2321 (2012).

  2. 2.

    H. Gehan, L. Fillaud, M.M. Chehimi, J. Aubard, A. Hohenau, N. Felidj, and C. Mangeney, ACS Nano 4, 6491 (2010).

  3. 3.

    E.C. Le Ru, P.G. Etchegoin, J. Grand, N. Félidj, J. Aubard, G. Lévi, A. Hohenau, and J.R. Krenn, Curr. Appl. Phys. 8, 467 (2008).

  4. 4.

    E.C. Le Ru, J. Grand, I. Sow, W.R.C. Somerville, P.G. Etchegoin, M.T. Delapierre, G. Charron, N. Félidj, G. Lévi, and J. Aubard, Nano Lett. 11, 5013 (2011).

  5. 5.

    G. McNay, D. Eustace, W.E. Smith, K. Faulds, and D. Graham, Appl. Spectrosc. 65, 825 (2011).

  6. 6.

    B. Sharma, R.R. Frontiera, A.-I. Henry, E. Ringe, and R.P. Van Duyne, Mater. Today 15, 16 (2012).

  7. 7.

    M. Moskovits, Rev. Mod. Phys. 57, 783 (1985).

  8. 8.

    S. Schlücker, ChemPhysChem 10, 1344 (2009).

  9. 9.

    A. Merlen, F. Lagugné-Labarthet, and E. Harté, J. Phys. Chem. C 114, 12878 (2010).

  10. 10.

    T.C. Dao, T.Q.N. Luong, T.A. Cao, N.H. Nguyen, N.M. Kieu, T.T. Luong, and V.V. Le, Adv. Nat. Sci. Nanosci. 6, 035012 (2015).

  11. 11.

    M. Nguyen, A. Kanaev, X. Sun, E. Lacaze, S. Lau-Truong, A. Lamouri, J. Aubard, N. Felidj, and C. Mangeney, Langmuir 31, 12830 (2015).

  12. 12.

    M. Nguyen, I. Kherbouche, M. Braik, A. Belkhir, L. Boubekeur-Lecaque, J. Aubard, C. Mangeney, and N. Felidj, ACS Omega 4, 1144 (2019).

  13. 13.

    G. Laurent, N. Félidj, S.L. Truong, J. Aubard, G. Lévi, J.R. Krenn, A. Hohenau, A. Leitner, and F.R. Aussenegg, Nano Lett. 5, 253 (2004).

  14. 14.

    G. Laurent, N. Félidj, J. Grand, J. Aubard, G. Lévi, A. Hohenau, F. Aussenegg, and J. Krenn, Phys. Rev. B Condens. Matter 73, 245417 (2006).

  15. 15.

    N. Félidj, G. Laurent, J. Grand, J. Aubard, G. Lévi, A. Hohenau, F.R. Aussenegg, and J.R. Krenn, Plasmonics 1, 35 (2006).

  16. 16.

    M.T.T. Nguyen, D.H. Nguyen, M.T. Pham, H.V. Pham, and C.D. Huynh, J. Electron. Mater. 48, 4970 (2019).

  17. 17.

    M. Fleischmann, P.J. Hendra, and A.J. McQuillan, Chem. Phys. Lett. 26, 163 (1974).

  18. 18.

    D.L. Jeanmaire and R.P. Van Duyne, J. Electroanal. Chem. Interfacial Electrochem. 84, 1 (1977).

  19. 19.

    L. Guerrini, J.V. Garcia-Ramos, C. Domingo, and S. Sanchez-Cortes, Anal. Chem. 81, 1418 (2009).

  20. 20.

    G.-N. Xiao and S.-Q. Man, Chem. Phys. Lett. 447, 305 (2007).

  21. 21.

    E.C. Le Ru, M. Dalley, and P.G. Etchegoin, Curr. Appl. Phys. 6, 411 (2006).

  22. 22.

    C.R. Rekha, V.U. Nayar, and K.G. Gopchandran, J. Sci. Adv. Mater. Dev. 3, 196 (2018).

  23. 23.

    P.A. Mosier-Boss, Nanomaterials 7, 142 (2017).

  24. 24.

    M.T.T. Nguyen, C. Mangeney, and N. Felidj, Adv. Nat. Sci. Nanosci. Nanotechnol. 9, 035013 (2018).

  25. 25.

    R.X. He, R. Liang, P. Peng, and Y.N. Zhou, J. Nanopart. Res. 19, 267 (2017).

  26. 26.

    N.D. Israelsen, C. Hanson, and E. Vargis, Sci. World J. 2015, 124582 (2015).

  27. 27.

    C.L. Haynes and R.P. Van Duyne, J. Phys. Chem. B 107, 7426 (2003).

  28. 28.

    M. Oćwieja, Z. Adamczyk, M. Morga, and K. Kubiak, Adv. Colloid Interface Sci. 222, 530 (2015).

  29. 29.

    C.L. Brosseau, A. Gambardella, F. Casadio, C.M. Grzywacz, J. Wouters, and R.P. Van Duyne, Anal. Chem. 81, 3056 (2009).

  30. 30.

    H. Masuhara, S. Kawata, and F. Tokunaga, Nano Biophotonics: Science and Technology (Amsterdam: Elsevier, 2007).

  31. 31.

    C.H. Sun, M.L. Wang, Q. Feng, W. Liu, and C.X. Xu, Russ. J. Phys. Chem. A 89, 291 (2015).

  32. 32.

    C. Li, Y. Huang, K. Lai, B.A. Rasco, and Y. Fan, Food Control 65, 99 (2016).

  33. 33.

    I. Ros, T. Placido, V. Amendola, C. Marinzi, N. Manfredi, R. Comparelli, M. Striccoli, A. Agostiano, A. Abbotto, D. Pedron, R. Pilot, and R. Bozio, Plasmonics 9, 581 (2014).

  34. 34.

    M.D. Malinsky, K.L. Kelly, G.C. Schatz, and R.P. Van Duyne, J. Am. Chem. Soc. 123, 1471 (2001).

  35. 35.

    N. Félidj, S.L. Truong, J. Aubard, G. Lévi, J.R. Krenn, A. Hohenau, A. Leitner, and F.R. Aussenegg, J. Chem. Phys. 120, 7141 (2004).

  36. 36.

    J. Becker, A. Trügler, A. Jakab, U. Hohenester, and C. Sönnichsen, Plasmonics 5, 161 (2010).

  37. 37.

    T. Itoh, K. Hashimoto, Y. Kikkawa, A. Ikehata, and Y. Ozaki, Handai Nanophotonics, ed. S. Kawata and H. Masuhara (Amsterdam: Elsevier, 2006)

  38. 38.

    F. Tian, F. Bonnier, A. Casey, A.E. Shanahan, and H.J. Byrne, Anal. Methods 6, 9116 (2014).

Download references

Funding

This research is funded by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant Number 103.02-2016.24.

Author information

Correspondence to Hai Van Pham or Mai Thi Tuyet Nguyen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hoang, L.T., Pham, H.V. & Nguyen, M.T.T. Investigation of the Factors Influencing the Surface-Enhanced Raman Scattering Activity of Silver Nanoparticles. Journal of Elec Materi 49, 1864–1871 (2020). https://doi.org/10.1007/s11664-019-07870-8

Download citation

Keywords

  • SERS activity
  • dye detection
  • silver nanospheres
  • silver nanorods