Two-Dimensional Cadmium Hydroxide Nanosheets for Electrochemical Capacitors Under High Operating Voltage

  • Karthik S. BhatEmail author
  • Basavaraj R. Huvinahalli
  • H. S. NagarajaEmail author


Electrochemical capacitors are deemed to be the most prospective energy storage devices in the field of alternative energy sources. Here, cadmium hydroxide (Cd(OH)2) nanosheets are hydrothermally synthesized and used as electrodes for supercapacitors. Physiochemical properties of the as-synthesized materials are examined using powder x-ray diffraction, scanning electron microscopy, high-resolution transmission electron microscopy and energy-dispersive x-ray spectroscopy measurements. Electrochemical investigations reveal an excellent operating potential window of 1.5 V, with the specific capacitance of ∼ 71 F g−1 at a scan rate of 2 mV s−1. In addition, the Cd(OH)2 electrodes are complemented by good cyclic retention for 2000 cycles. Further, the analysis of the type of charge-storage mechanism reveals prominent contributions from the diffusion-controlled processes.

Graphic Abstract


Cadmium hydroxide nanosheets electrochemical capacitors 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


Supplementary material

11664_2019_7860_MOESM1_ESM.pdf (528 kb)
Supplementary material 1 (PDF 528 kb)


  1. 1.
    X. Luo, J. Wang, M. Dooner, and J. Clarke, Appl. Energy 137, 511 (2015).CrossRefGoogle Scholar
  2. 2.
    K.S. Bhat and H.S. Nagaraja, Int. J. Hydrog. Energy 44, 17878 (2019).CrossRefGoogle Scholar
  3. 3.
    K. Fic, A. Platek, J. Piwek, and E. Frackowiak, Mater. Today 21, 437 (2018).Google Scholar
  4. 4.
    M. Zhou, F. Pu, Z. Wang, and S. Guan, Carbon 68, 185 (2014).CrossRefGoogle Scholar
  5. 5.
    Z. Wang, H.Y. Yue, Z.M. Yu, F. Yao, X. Gao, E.H. Guan, H.J. Zhang, W.Q. Wang, and S.S. Song, J. Mater. Sci.: Mater. Electron. 30, 8537 (2019).Google Scholar
  6. 6.
    H. Wang, H. Feng, and J. Li, Small 10, 2165 (2014).CrossRefGoogle Scholar
  7. 7.
    M. Zhi, C. Xiang, J. Li, M. Li, and N. Wu, Nanoscale 5, 72 (2013).CrossRefGoogle Scholar
  8. 8.
    P. Simon and Y. Gogotsi, Nat. Mater. 7, 845 (2008).CrossRefGoogle Scholar
  9. 9.
    G. Wang, L. Zhang, and J. Zhang, Chem. Soc. Rev. 41, 797 (2012).CrossRefGoogle Scholar
  10. 10.
    A. González, E. Goikolea, J.A. Barrena, and R. Mysyk, Renew. Sustain. Energy Rev. 58, 1189 (2016).CrossRefGoogle Scholar
  11. 11.
    C. Zhao, Y. Huang, C. Zhao, X. Shao, and Z. Zhu, Electrochim. Acta 291, 287 (2018).CrossRefGoogle Scholar
  12. 12.
    M. Rajkumar, C.-T. Hsu, T.-H. Wu, M.-G. Chen, and C.-C. Hu, Prog. Nat. Sci. Mater. Int. 25, 527 (2015).CrossRefGoogle Scholar
  13. 13.
    F. Wang, X. Wu, X. Yuan, Z. Liu, Y. Zhang, L. Fu, Y. Zhu, Q. Zhou, Y. Wu, and W. Huang, Chem. Soc. Rev. 46, 6816 (2017).CrossRefGoogle Scholar
  14. 14.
    Y. He, K. Xiang, Y. Wang, W. Zhou, Y. Zhu, L. Xiao, W. Chen, X. Chen, H. Chen, H. Cheng, and Z. Lu, Carbon 154, 330 (2019).CrossRefGoogle Scholar
  15. 15.
    B.E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications (Berlin: Springer, 2013).Google Scholar
  16. 16.
    H. Tomiyasu, H. Shikata, K. Takao, N. Asanuma, S. Taruta, and Y.-Y. Park, Sci. Rep. 7, 45048 (2017).CrossRefGoogle Scholar
  17. 17.
    J. Jiang, J. Electrochem. Soc. 164, H5043 (2017).CrossRefGoogle Scholar
  18. 18.
    C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhang, and J. Zhang, Chem. Soc. Rev. 44, 7484 (2015).CrossRefGoogle Scholar
  19. 19.
    W. Liu, X. Li, M. Zhu, and X. He, J. Power Sour. 282, 179 (2015).CrossRefGoogle Scholar
  20. 20.
    P.-C. Chen, G. Shen, Y. Shi, H. Chen, and C. Zhou, ACS Nano 4, 4403 (2010).CrossRefGoogle Scholar
  21. 21.
    M. Kalyani and R.N. Emerson, J. Mater. Sci.: Mater. Electron. 30, 1214 (2019).Google Scholar
  22. 22.
    A.M. Abioye and F.N. Ani, Renew. Sustain. Energy Rev. 52, 1282 (2015).CrossRefGoogle Scholar
  23. 23.
    Y.-K. Hsu, Y.-C. Chen, Y.-G. Lin, L.-C. Chen, and K.-H. Chen, J. Mater. Chem. 22, 3383 (2012).CrossRefGoogle Scholar
  24. 24.
    F. Guo, X. Jiang, X. Li, K. Peng, C. Guo, and Z. Rao, J. Mater. Sci.: Mater. Electron. 30, 914 (2019).Google Scholar
  25. 25.
    S. Patil, S. Raut, R. Gore, and B. Sankapal, New J. Chem. 39, 9124 (2015).CrossRefGoogle Scholar
  26. 26.
    Y. Wang, X. Li, Y. Wang, Y. Liu, Y. Bai, R. Liu, and G. Yuan, Electrochim. Acta 299, 12 (2019).CrossRefGoogle Scholar
  27. 27.
    A.D. Jagadale, G. Guan, X. Du, X. Hao, X. Li, and A. Abudula, RSC Adv. 5, 56942 (2015).CrossRefGoogle Scholar
  28. 28.
    X. Ou, Y. Wang, S. Lei, W. Zhou, S. Sun, Q. Fu, Y. Xiao, and B. Cheng, Dalton Trans. 47, 14958 (2018).CrossRefGoogle Scholar
  29. 29.
    J. Li, W. Zhao, F. Huang, A. Manivannan, and N. Wu, Nanoscale 3, 5103 (2011).CrossRefGoogle Scholar
  30. 30.
    X. Xiong, D. Ding, D. Chen, G. Waller, Y. Bu, Z. Wang, and M. Liu, Nano Energy 11, 154 (2015).CrossRefGoogle Scholar
  31. 31.
    K.S. Bhat and H.S. Nagaraja, Bull. Mater. Sci. 42, 265 (2019).CrossRefGoogle Scholar
  32. 32.
    Z. Wang, W.A. Perera, S. Perananthan, J.P. Ferraris, and K.J. Balkus, ACS Omega 3, 13913 (2018).CrossRefGoogle Scholar
  33. 33.
    R. Rajagopal and K.-S. Ryu, J. Ind. Eng. Chem. 60, 441 (2018).CrossRefGoogle Scholar
  34. 34.
    D. He, G. Wang, G. Liu, J. Bai, H. Suo, and C. Zhao, J. Alloys Compd. 699, 706 (2017).CrossRefGoogle Scholar
  35. 35.
    P. Naveenkumar, G. Paruthimal Kalaignan, S. Arulmani, and S. Anandan, J. Mater. Sci. Mater. Electron. 29, 16853 (2018).CrossRefGoogle Scholar
  36. 36.
    M. Khairy, H.A. Ayoub, and C.E. Banks, RSC Adv. 8, 921 (2018).CrossRefGoogle Scholar
  37. 37.
    M. Chen and L. Gao, J. Cryst. Growth 286, 228 (2006).CrossRefGoogle Scholar
  38. 38.
    Y. Gogotsi and R.M. Penner, ACS Nano 12, 2081 (2018).CrossRefGoogle Scholar
  39. 39.
    Y. Gao, G.P. Pandey, J. Turner, C.R. Westgate, and B. Sammakia, Nanoscale Res. Lett. 7, 651 (2012).CrossRefGoogle Scholar
  40. 40.
    Y. He, K. Xiang, W. Zhou, Y. Zhu, X. Chen, and H. Chen, Chem. Eng. J. 353, 666 (2018).CrossRefGoogle Scholar
  41. 41.
    D. Yuan, J. Chen, S. Tan, N. Xia, and Y. Liu, Electrochem. Commun. 11, 1191 (2009).CrossRefGoogle Scholar
  42. 42.
    C. Shi, K. Xiang, Y. Zhu, X. Chen, W. Zhou, and H. Chen, Electrochim. Acta 246, 1088 (2017).CrossRefGoogle Scholar
  43. 43.
    S. Zhang and N. Pan, Adv. Energy Mater. 5, 1401401 (2015).CrossRefGoogle Scholar
  44. 44.
    S.K. Balasingam, J.S. Lee, and Y. Jun, Dalton Trans. 45, 9646 (2016).CrossRefGoogle Scholar
  45. 45.
    Y. Zhou, S.L. Candelaria, Q. Liu, Y. Huang, E. Uchaker, and G. CaO, J. Mater. Chem. A 2, 8472 (2014).CrossRefGoogle Scholar
  46. 46.
    M.M. Vadiyar, S.C. Bhise, S.K. Patil, S.S. Kolekar, A.R. Shelke, N.G. Deshpande, J.-Y. Chang, K.S. Ghule, and A.V. Ghule, Chem. Commun. 52, 2557 (2016).CrossRefGoogle Scholar
  47. 47.
    J. Wang, J. Polleux, J. Lim, and B. Dunn, J. Phys. Chem. C 111, 14925 (2007).CrossRefGoogle Scholar
  48. 48.
    K.V. Sankar and R.K. Selvan, J. Power Sour. 275, 399 (2015).CrossRefGoogle Scholar
  49. 49.
    R.P. Šimpraga and B.E. Conway, Electrochim. Acta 43, 3045 (1998).CrossRefGoogle Scholar
  50. 50.
    W. Lv, J. Zhao, F. Wen, J. Xiang, L. Li, L. Wang, Z. Liu, and Y. Tian, J. Mater. Chem. A 3, 13786 (2015).CrossRefGoogle Scholar
  51. 51.
    M. Feng, Q. Du, L. Su, G. Zhang, G. Wang, Z. Ma, W. Gao, X. Qin, and G. Shao, Sci. Rep. 7, 2219 (2017).CrossRefGoogle Scholar
  52. 52.
    K. Adams, A.F. González, J. Mallows, T. Li, J.H.J. Thijssen, and N. Robertson, J. Mater. Chem. A 7, 1638 (2019).CrossRefGoogle Scholar
  53. 53.
    C. Tran and V. Kalra, J. Power Sources 235, 289 (2013).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of PhysicsNational Institute of Technology KarnatakaSurathkal, MangaluruIndia

Personalised recommendations