Synthesis and Characterization of Reduced Graphene Oxide for Supercapacitor Application with a Biodegradable Electrolyte

  • S. Adarsh Rag
  • M. Selvakumar
  • Somashekara Bhat
  • Santhosh Chidangil
  • Shounak DeEmail author


The possibility of synthesizing a proton-conducting biopolymer electrolyte of polyvinyl alcohol (PVA) doped with 1-ethyl-3-methylimidazolium ethyl sulphate ([EMIM][EtSO4]) ionic liquid and ammonium acetate (CH3COONH4) by solvent casting has been investigated. The ionic conductivity of electrolyte membrane increased with addition of IL and fairly good ionic conductivity of 6.56 × 10−4 S cm−1 has been attained. The conductivity studies of the biopolymer electrolyte membrane have been carried out in coplanar configuration. Graphene oxide (GO) and reduced graphene oxide (rGO) have been synthesized by a chemical method. The prepared rGO has been characterized using ultraviolet–visible (UV–Vis) absorption spectroscopy, x-ray diffraction, Raman and x-ray photoelectron spectroscopy analysis. The surface area of rGO has been increased from 2.69 m2 g−1 to 203.78 m2 g−1. In this work, a supercapacitor with a symmetric electrode has been fabricated using PVA-doped ionic liquid as a biopolymer electrolyte and rGO as electrode materials. Its electrochemical performance has been verified, and the device exhibited a good specific capacitance of 138 F g−1. This combination was found to be very useful to improve the capacitance of supercapacitor.


Reduced graphene oxide modified Hummers' method bio-polymer electrolyte supercapacitor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Z. Wu, L. Li, J.M. Yan, and X.B. Zhang, Adv. Sci. 4, 1600382 (2017).CrossRefGoogle Scholar
  2. 2.
    J.R. Miller and P. Simon, Sci. Mag. 321, 651 (2008).Google Scholar
  3. 3.
    K. Fic, A. Platek, J. Piwek, and E. Frackowiak, Mater. Today 21, 437 (2018).CrossRefGoogle Scholar
  4. 4.
    C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhang, and J. Zhang, Chem. Soc. Rev. 44, 7484 (2015).CrossRefGoogle Scholar
  5. 5.
    A. Burke, J. Power Sources 91, 37 (2000).CrossRefGoogle Scholar
  6. 6.
    J.R. Miller, J. Power Sources 326, 726 (2016). Scholar
  7. 7.
    M. Winter and R.J. Brodd, Chem. Rev. 104, 4245 (2004).CrossRefGoogle Scholar
  8. 8.
    M.F. El-Kady, V. Strong, S. Dubin, and R.B. Kaner, Science 335, 1326 (2012).CrossRefGoogle Scholar
  9. 9.
    B.E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications (Springer, Boston, 1999). Scholar
  10. 10.
    Y. Zhang, H. Feng, X. Wu, L. Wang, A. Zhan, T. Xia, H. Dong, X. Li, and L. Zhang, Int. J. Hydrogen Energy 34, 4889 (2009).CrossRefGoogle Scholar
  11. 11.
    S. Faraji and F.N. Ani, Renew. Sustain. Energy Rev. 42, 823 (2014).CrossRefGoogle Scholar
  12. 12.
    M. Ciszewski, A. Koszorek, T. Radko, P. Szatkowski, and D. Janas, J. Electron. Mater. 48, 717 (2019).CrossRefGoogle Scholar
  13. 13.
    F. Béguin, V. Presser, A. Balducci, and E. Frackowiak, Adv. Mat. 26, 2219 (2014).CrossRefGoogle Scholar
  14. 14.
    A.K. Geim and K.S. Novoselov, Nat. Mater. 6, 183 (2007).CrossRefGoogle Scholar
  15. 15.
    A.K. Geim, Science 324, 1530 (2009).CrossRefGoogle Scholar
  16. 16.
    S. Stankovich, D.A. Dikin, G.H. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, and R.S. Ruoff, Nature 442, 282 (2006).CrossRefGoogle Scholar
  17. 17.
    Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen, and Y. Chen, J. Phys. Chem. C 113, 13103 (2009).CrossRefGoogle Scholar
  18. 18.
    M. Terrones, A.R. Botello-Méndez, J. Campos-Delgado, F. López-Urías, Y.I. Vega-Cantú, F.J. Rodríguez-Macías, A.L. Elías, E. Muñoz-Sandoval, A.G. Cano-Márquez, J.C. Charlier, and H. Terrones, Nano Today 5, 351 (2010).CrossRefGoogle Scholar
  19. 19.
    S. Pei and H.M. Cheng, Carbon 50, 3210 (2011).CrossRefGoogle Scholar
  20. 20.
    K. Chua and M. Pumera, Chem. Soc. Rev. 43, 291 (2013).CrossRefGoogle Scholar
  21. 21.
    S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, and R.S. Ruoff, Carbon 45, 1558 (2007).CrossRefGoogle Scholar
  22. 22.
    A. González, E. Goikolea, J.A. Barrena, and R. Mysyk, Renew. Sustain. Energy Rev. 58, 1189 (2016).CrossRefGoogle Scholar
  23. 23.
    P. Simon and Y. Gogotsi, Nat. Mater. 7, 845 (2008).CrossRefGoogle Scholar
  24. 24.
    P.C. Okonkwo, E. Collins, and E. Okonkwo, Biopolymer Composites in Electronics (Elsevier, 2016), pp. 487–503. Scholar
  25. 25.
    E. Raymundo-Piñero, F. Leroux, and F. Béguin, Adv. Mat. 18, 1877 (2006).CrossRefGoogle Scholar
  26. 26.
    L. Wang, W. Wang, P. Fan, M. Zhou, J. Yang, F. Chen, and M. Zhong, J. Appl. Polym. Sci. 134, 45006 (2017).Google Scholar
  27. 27.
    E. Chiellini, A. Corti, S. D’Antone, and R. Solaro, Prog. Polym. Sci. 28, 963 (2003).CrossRefGoogle Scholar
  28. 28.
    G. Hirankumar, S. Selvasekarapandian, N. Kuwata, J. Kawamura, and T. Hattori, J. Power Sources 144, 262 (2005).CrossRefGoogle Scholar
  29. 29.
    C.W. Liew, S. Ramesh, and A.K. Arof, Int. J. Hydrogen Energy 39, 2953 (2013).CrossRefGoogle Scholar
  30. 30.
    A.L. Saroj and R.K. Singh, J. Phys. Chem. Solids 73, 162 (2011).CrossRefGoogle Scholar
  31. 31.
    Q.L. Chen, K.J. Wu, and C.H. He, J. Chem. Eng. Data 58, 2058 (2013).CrossRefGoogle Scholar
  32. 32.
    C.W. Liew, S. Ramesh, and A.K. Arof, Int. J. Hydrogen Energy 39, 2917 (2013).CrossRefGoogle Scholar
  33. 33.
    G. Venugopal, K. Krishnamoorthy, R. Mohan, and S.J. Kim, Mater. Chem. Phys. 132, 29 (2011).CrossRefGoogle Scholar
  34. 34.
    Y.N. Sudhakar and M. Selvakumar, Electrochim. Acta 78, 398 (2012).CrossRefGoogle Scholar
  35. 35.
    Z.S. Wu, X. Feng, and H.M. Cheng, Natl. Sci. Rev. 1, 277 (2013).CrossRefGoogle Scholar
  36. 36.
    D.R. Dreyer, S. Park, C.W. Bielawski, and R.S. Ruoff, Chem. Soc. Rev. 39, 228 (2009).CrossRefGoogle Scholar
  37. 37.
    K. Krishnamoorthy, R. Mohan, and S.J. Kim, Appl. Phys. Lett. 98, 244101 (2011).CrossRefGoogle Scholar
  38. 38.
    S. Park, J. An, J.R. Potts, A. Velamakanni, S. Murali, and R.S. Ruoff, Carbon 49, 3019 (2011).CrossRefGoogle Scholar
  39. 39.
    A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, and A.K. Geim, Phys. Rev. Lett. 97, 187401 (2006).CrossRefGoogle Scholar
  40. 40.
    S. Eigler, C. Dotzer, and A. Hirsch, Carbon 50, 3666 (2012).CrossRefGoogle Scholar
  41. 41.
    G. Hirankumar, S. Selvasekarapandian, M.S. Bhuvaneswari, R. Baskaran, and M. Vijayakumar, Ionics 10, 135 (2004).CrossRefGoogle Scholar
  42. 42.
    C.W. Liew, K.H. Arifin, J. Kawamura, Y. Iwai, S. Ramesh, A.K. Arof, and J. Non-Cryst, Solids 425, 163 (2015).Google Scholar
  43. 43.
    J.R. MacCallum and C.A. Vincent, Polymer Electrolyte Reviews (Berlin: Springer, 1989).Google Scholar
  44. 44.
    A.L. Saroj and R.K. Singh, Phase Transit. 84, 231 (2011).CrossRefGoogle Scholar
  45. 45.
    Y.N. Sudhakar, M. Selvakumar, and D.K. Bhat, Ionics 19, 277 (2012).CrossRefGoogle Scholar
  46. 46.
    H. Sowmya and M. Selvakumar, Int. J. Hydrogen Energy 43, 4067 (2018).CrossRefGoogle Scholar
  47. 47.
    J. Zhu, W. Zhou, Y. Zhou, X. Cheng, and J. Yang, J. Electron. Mater. 48, 1531 (2019).CrossRefGoogle Scholar
  48. 48.
    H. Sowmya, Y.N. Sudhakar, and M. Selvakumar, Ionics 22, 1729 (2016).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • S. Adarsh Rag
    • 1
  • M. Selvakumar
    • 2
  • Somashekara Bhat
    • 1
  • Santhosh Chidangil
    • 3
  • Shounak De
    • 1
    Email author
  1. 1.Department of Electronics and Communication Engineering, Manipal Institute of TechnologyManipal Academy of Higher EducationManipalIndia
  2. 2.Department of Chemistry, Manipal Institute of TechnologyManipal Academy of Higher EducationManipalIndia
  3. 3.Department of Atomic and Molecular PhysicsManipal Academy of Higher EducationManipalIndia

Personalised recommendations