Synthesis and Characterization of Reduced Graphene Oxide for Supercapacitor Application with a Biodegradable Electrolyte
- 5 Downloads
Abstract
The possibility of synthesizing a proton-conducting biopolymer electrolyte of polyvinyl alcohol (PVA) doped with 1-ethyl-3-methylimidazolium ethyl sulphate ([EMIM][EtSO4]) ionic liquid and ammonium acetate (CH3COONH4) by solvent casting has been investigated. The ionic conductivity of electrolyte membrane increased with addition of IL and fairly good ionic conductivity of 6.56 × 10−4 S cm−1 has been attained. The conductivity studies of the biopolymer electrolyte membrane have been carried out in coplanar configuration. Graphene oxide (GO) and reduced graphene oxide (rGO) have been synthesized by a chemical method. The prepared rGO has been characterized using ultraviolet–visible (UV–Vis) absorption spectroscopy, x-ray diffraction, Raman and x-ray photoelectron spectroscopy analysis. The surface area of rGO has been increased from 2.69 m2 g−1 to 203.78 m2 g−1. In this work, a supercapacitor with a symmetric electrode has been fabricated using PVA-doped ionic liquid as a biopolymer electrolyte and rGO as electrode materials. Its electrochemical performance has been verified, and the device exhibited a good specific capacitance of 138 F g−1. This combination was found to be very useful to improve the capacitance of supercapacitor.
Keywords
Reduced graphene oxide modified Hummers' method bio-polymer electrolyte supercapacitorPreview
Unable to display preview. Download preview PDF.
Notes
Conflict of interest
The authors declare that they have no conflict of interest.
References
- 1.Z. Wu, L. Li, J.M. Yan, and X.B. Zhang, Adv. Sci. 4, 1600382 (2017).CrossRefGoogle Scholar
- 2.J.R. Miller and P. Simon, Sci. Mag. 321, 651 (2008).Google Scholar
- 3.K. Fic, A. Platek, J. Piwek, and E. Frackowiak, Mater. Today 21, 437 (2018).CrossRefGoogle Scholar
- 4.C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhang, and J. Zhang, Chem. Soc. Rev. 44, 7484 (2015).CrossRefGoogle Scholar
- 5.A. Burke, J. Power Sources 91, 37 (2000).CrossRefGoogle Scholar
- 6.J.R. Miller, J. Power Sources 326, 726 (2016). https://doi.org/10.1016/j.jpowsour.2016.04.020.CrossRefGoogle Scholar
- 7.M. Winter and R.J. Brodd, Chem. Rev. 104, 4245 (2004).CrossRefGoogle Scholar
- 8.M.F. El-Kady, V. Strong, S. Dubin, and R.B. Kaner, Science 335, 1326 (2012).CrossRefGoogle Scholar
- 9.B.E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications (Springer, Boston, 1999). https://doi.org/10.1007/978-1-4757-3058-6.CrossRefGoogle Scholar
- 10.Y. Zhang, H. Feng, X. Wu, L. Wang, A. Zhan, T. Xia, H. Dong, X. Li, and L. Zhang, Int. J. Hydrogen Energy 34, 4889 (2009).CrossRefGoogle Scholar
- 11.S. Faraji and F.N. Ani, Renew. Sustain. Energy Rev. 42, 823 (2014).CrossRefGoogle Scholar
- 12.M. Ciszewski, A. Koszorek, T. Radko, P. Szatkowski, and D. Janas, J. Electron. Mater. 48, 717 (2019).CrossRefGoogle Scholar
- 13.F. Béguin, V. Presser, A. Balducci, and E. Frackowiak, Adv. Mat. 26, 2219 (2014).CrossRefGoogle Scholar
- 14.A.K. Geim and K.S. Novoselov, Nat. Mater. 6, 183 (2007).CrossRefGoogle Scholar
- 15.A.K. Geim, Science 324, 1530 (2009).CrossRefGoogle Scholar
- 16.S. Stankovich, D.A. Dikin, G.H. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, and R.S. Ruoff, Nature 442, 282 (2006).CrossRefGoogle Scholar
- 17.Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen, and Y. Chen, J. Phys. Chem. C 113, 13103 (2009).CrossRefGoogle Scholar
- 18.M. Terrones, A.R. Botello-Méndez, J. Campos-Delgado, F. López-Urías, Y.I. Vega-Cantú, F.J. Rodríguez-Macías, A.L. Elías, E. Muñoz-Sandoval, A.G. Cano-Márquez, J.C. Charlier, and H. Terrones, Nano Today 5, 351 (2010).CrossRefGoogle Scholar
- 19.S. Pei and H.M. Cheng, Carbon 50, 3210 (2011).CrossRefGoogle Scholar
- 20.K. Chua and M. Pumera, Chem. Soc. Rev. 43, 291 (2013).CrossRefGoogle Scholar
- 21.S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, and R.S. Ruoff, Carbon 45, 1558 (2007).CrossRefGoogle Scholar
- 22.A. González, E. Goikolea, J.A. Barrena, and R. Mysyk, Renew. Sustain. Energy Rev. 58, 1189 (2016).CrossRefGoogle Scholar
- 23.P. Simon and Y. Gogotsi, Nat. Mater. 7, 845 (2008).CrossRefGoogle Scholar
- 24.P.C. Okonkwo, E. Collins, and E. Okonkwo, Biopolymer Composites in Electronics (Elsevier, 2016), pp. 487–503. https://doi.org/10.1016/B978-0-12-809261-3.00018-8.CrossRefGoogle Scholar
- 25.E. Raymundo-Piñero, F. Leroux, and F. Béguin, Adv. Mat. 18, 1877 (2006).CrossRefGoogle Scholar
- 26.L. Wang, W. Wang, P. Fan, M. Zhou, J. Yang, F. Chen, and M. Zhong, J. Appl. Polym. Sci. 134, 45006 (2017).Google Scholar
- 27.E. Chiellini, A. Corti, S. D’Antone, and R. Solaro, Prog. Polym. Sci. 28, 963 (2003).CrossRefGoogle Scholar
- 28.G. Hirankumar, S. Selvasekarapandian, N. Kuwata, J. Kawamura, and T. Hattori, J. Power Sources 144, 262 (2005).CrossRefGoogle Scholar
- 29.C.W. Liew, S. Ramesh, and A.K. Arof, Int. J. Hydrogen Energy 39, 2953 (2013).CrossRefGoogle Scholar
- 30.A.L. Saroj and R.K. Singh, J. Phys. Chem. Solids 73, 162 (2011).CrossRefGoogle Scholar
- 31.Q.L. Chen, K.J. Wu, and C.H. He, J. Chem. Eng. Data 58, 2058 (2013).CrossRefGoogle Scholar
- 32.C.W. Liew, S. Ramesh, and A.K. Arof, Int. J. Hydrogen Energy 39, 2917 (2013).CrossRefGoogle Scholar
- 33.G. Venugopal, K. Krishnamoorthy, R. Mohan, and S.J. Kim, Mater. Chem. Phys. 132, 29 (2011).CrossRefGoogle Scholar
- 34.Y.N. Sudhakar and M. Selvakumar, Electrochim. Acta 78, 398 (2012).CrossRefGoogle Scholar
- 35.Z.S. Wu, X. Feng, and H.M. Cheng, Natl. Sci. Rev. 1, 277 (2013).CrossRefGoogle Scholar
- 36.D.R. Dreyer, S. Park, C.W. Bielawski, and R.S. Ruoff, Chem. Soc. Rev. 39, 228 (2009).CrossRefGoogle Scholar
- 37.K. Krishnamoorthy, R. Mohan, and S.J. Kim, Appl. Phys. Lett. 98, 244101 (2011).CrossRefGoogle Scholar
- 38.S. Park, J. An, J.R. Potts, A. Velamakanni, S. Murali, and R.S. Ruoff, Carbon 49, 3019 (2011).CrossRefGoogle Scholar
- 39.A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, and A.K. Geim, Phys. Rev. Lett. 97, 187401 (2006).CrossRefGoogle Scholar
- 40.S. Eigler, C. Dotzer, and A. Hirsch, Carbon 50, 3666 (2012).CrossRefGoogle Scholar
- 41.G. Hirankumar, S. Selvasekarapandian, M.S. Bhuvaneswari, R. Baskaran, and M. Vijayakumar, Ionics 10, 135 (2004).CrossRefGoogle Scholar
- 42.C.W. Liew, K.H. Arifin, J. Kawamura, Y. Iwai, S. Ramesh, A.K. Arof, and J. Non-Cryst, Solids 425, 163 (2015).Google Scholar
- 43.J.R. MacCallum and C.A. Vincent, Polymer Electrolyte Reviews (Berlin: Springer, 1989).Google Scholar
- 44.A.L. Saroj and R.K. Singh, Phase Transit. 84, 231 (2011).CrossRefGoogle Scholar
- 45.Y.N. Sudhakar, M. Selvakumar, and D.K. Bhat, Ionics 19, 277 (2012).CrossRefGoogle Scholar
- 46.H. Sowmya and M. Selvakumar, Int. J. Hydrogen Energy 43, 4067 (2018).CrossRefGoogle Scholar
- 47.J. Zhu, W. Zhou, Y. Zhou, X. Cheng, and J. Yang, J. Electron. Mater. 48, 1531 (2019).CrossRefGoogle Scholar
- 48.H. Sowmya, Y.N. Sudhakar, and M. Selvakumar, Ionics 22, 1729 (2016).CrossRefGoogle Scholar