Hybrid Nanocomposites of Multi-walled Carbon Nanotubes (MWCNTs) and CuO as Electrode Materials for Energy Storage Devices
- 19 Downloads
Abstract
The search for electrode materials as a potential candidate for Li-ion based batteries is important to achieve high-performance devices. This work constitutes the experimental and theoretical investigation of structural stability and electrochemical behavior of cupric oxide and multi-walled carbon nanotubes (CuO/MWNNTs) nanocomposites. The electrochemical performance of nanocomposites was gauged employing charge/discharge and cyclic voltammetry studies. It is shown that electrochemical properties of pure materials, due to the synergistic effect, are considerably enhanced in CuO/MWNNTs composites. As a result, high rate capability and better cycling stability is observed in CuO-5%MWCNTs samples. In addition, this composite possesses better specific capacity 810 mAh g−1 and a high columbic efficiency of 80.86%. The DFT calculations also confirmed the improved electrochemical properties of MWCNTs in the presence of CuO nanoparticles.
Keywords
MWCNT DFT co-precipitation energy storage nanocompositesPreview
Unable to display preview. Download preview PDF.
Notes
References
- 1.Y. Li, C. Zhu, T. Lu, Z. Guo, D.Z.J. Ma, and S. Zhu, Carbon 56, 565 (2013).CrossRefGoogle Scholar
- 2.S.M. Abbas, S.T. Hussain, S. Ali, F. Abbas, N. Ahmad, N. Ali, and Y. Khan, J. Alloys Compd. 574, 221 (2013).CrossRefGoogle Scholar
- 3.S.M. Abbas, S.T. Hussain, S. Ali, N. Ahmad, N. Ali, and S. Munawar, Electrochim. Acta 105, 481 (2013).CrossRefGoogle Scholar
- 4.S.M. Abbas, S.T. Hussain, S. Ali, K.S. Munawar, N. Ahmad, and N. Ali, Mater. Lett. 107, 158–161 (2013).CrossRefGoogle Scholar
- 5.B. Wang, J.L. Cheng, Y.P. Wu, D. Wang, and D.N. He, Electrochem. Commun. 23, 5 (2012).CrossRefGoogle Scholar
- 6.J. Liu, H. Feng, J. Jiang, D. Qian, J. Li, S. Peng, and Y. Liu, J. Alloys Compd. 603, 144 (2014).CrossRefGoogle Scholar
- 7.S.M. Abbas, S.T. Hussain, S. Ali, N. Ahmad, N. Ali, and S. Munawar, J. Mater. Sci. 48, 5429 (2013).CrossRefGoogle Scholar
- 8.Q. Hao, L. Xu, G. Li, Z. Ju, C. Huisun, H. Ma, and Y. Qian, J. Alloys Compd. 509, 6217 (2011).CrossRefGoogle Scholar
- 9.H. Huang, W.K. Zhang, X.P. Gan, C. Wang, and L. Zhang, Mater. Lett. 61, 296–299 (2007).CrossRefGoogle Scholar
- 10.W. Oh and M. Chen, Bul. Korean Chem. Soc. 29, 159 (2008).CrossRefGoogle Scholar
- 11.M. Verelst, T. Ould Ely, C. Amiens, E. Snoeck, P. Lecante, A. Mosset, M. Respaud, J.M. Broto, and B. Chaudret, Chem. Mater. 11, 2702 (1999).CrossRefGoogle Scholar
- 12.X. Sun, Y. Xu, P. Ding, M. Jia, and G. Ceder, J. Power Sources 244, 690 (2013).CrossRefGoogle Scholar
- 13.X. Chen, H. Zhu, Y.C. Chen, Y. Shang, A. Cao, L. Hu, and G.W. Rubloff, ACS Nano 6, 7948 (2012).CrossRefGoogle Scholar
- 14.A. Marschilok, C.Y. Lee, A. Subramanian, K.J. Takeuchi, and E.S. Takeuchi, Energy Environ. Sci. 4, 2943 (2011).CrossRefGoogle Scholar
- 15.H.J. Li, W.G. Lu, J.J. Li, X.D. Bai, and C.Z. Gu, Phys. Rev. Lett. 95, 086601 (2005).CrossRefGoogle Scholar
- 16.E.K. Gross, C.A. Ullrich, and U.J. Gossmann, E.U. Gross and R. Dreizler, Editors Springer, 149–171 (1995).Google Scholar
- 17.G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).CrossRefGoogle Scholar
- 18.J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle Scholar
- 19.G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).CrossRefGoogle Scholar
- 20.G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).CrossRefGoogle Scholar
- 21.Y. Cai, G. Zhang, and Y.W. Zhang, J. Phys. Chem. C 119, 13929 (2015).CrossRefGoogle Scholar
- 22.M. Firdos, F. Hussain, M. Imran, M. Ismail, A.M. Rana, M.A. Javid, A. Majid, R.M.A. Khalil, and H. Ullah, Mater. Res. Express 4, 106301 (2017).CrossRefGoogle Scholar
- 23.Y.Q. Cai, Q. Ke, G. Zhang, B.I. Yakobson, and Y.W. Zhang, J. Am. Chem. Soc. 138, 10199 (2016).CrossRefGoogle Scholar
- 24.A.V. Krukau, O.A. Vydrov, A.F. Izmaylov, and G.E. Scuseria, J. Chem. Phys. 125, 224106 (2006).CrossRefGoogle Scholar
- 25.H.J. Monkhorst and J.D. Pack, Phys. Rev. B13, 5188 (1976).CrossRefGoogle Scholar
- 26.J.D. Pack and H.J. Monkhorst, Phys. Rev. B 13, 1748 (1977).CrossRefGoogle Scholar
- 27.Y.Q. Cai, Q. Ke, G. Zhang, Y.P. Fengand, and B. Vivek, Adv. Funct. Mater. 25, 2230 (2015).CrossRefGoogle Scholar
- 28.M. Ismail, E. Ahmed, A.M. Rana, F. Hussain, I. Talib, M.Y. Nadeem, D. Panda, and N.A. Shah, ACS Appl. Mater. Interface 8, 6127 (2016).CrossRefGoogle Scholar
- 29.H. Wang, J.T. Robinson, G. Diankov, and H. Dai, J. Am. Chem. Soc. 132, 3270 (2010).CrossRefGoogle Scholar
- 30.G. Du, C. Zhong, P. Zhang, Z. Guo, Z. Chen, and H. Liu, Electrochim. Acta 55, 2582 (2010).CrossRefGoogle Scholar
- 31.S.M. Abbas, S.T. Hussain, S. Ali, N. Ahmad, N. Ali, S. Abbas, and Z. Ali, J. Solid State Chem. 202, 43 (2013).CrossRefGoogle Scholar
- 32.F.S.K. Ling, H.G. Zhen, W.J. Xue Jun, T.L. Zhang Shu, R.C. Xiao, Y.F. Shi, and G. Sun, Electrochim. Acta 54, 5825 (2009).CrossRefGoogle Scholar
- 33.J.Y. Xiang, J.P. Tu, J. Zhang, J. Zhong, D. Zhang, and J.P. Cheng, Electrochem. Commun. 12, 1103 (2010).CrossRefGoogle Scholar
- 34.X.M. Liu, Z.D. Huang, S.W. Oh, B. Zhang, P.C. Ma, M.M.F. Yuen, and J.K. Kim, Compos. Sci. Technol. 72, 121 (2012).CrossRefGoogle Scholar
- 35.J. Maier, Nat. Mater. 4, 805 (2005).CrossRefGoogle Scholar