Advertisement

Effect of Precursor Solution Aging on the Thermoelectric Performance of CsSnI3 Thin Film

  • Ajay Kumar BaranwalEmail author
  • Shrikant Saini
  • Zhen Wang
  • Kengo Hamada
  • Daisuke Hirotani
  • Kohei Nishimura
  • Muhammad Akmal Kamarudin
  • Gaurav Kapil
  • Tomohide Yabuki
  • Satoshi Iikubo
  • Qing Shen
  • Koji Miyazaki
  • Shuzi HayaseEmail author
Topical Collection: International Conference on Thermoelectrics 2019
  • 16 Downloads
Part of the following topical collections:
  1. International Conference on Thermoelectrics 2019

Abstract

Inorganic CsSnI3 based perovskite crystals are interesting thermoelectric materials, owing to their unusual electronic properties. Here we report the thermoelectric power performance of a solution-coated CsSnI3 thin film from the viewpoint of carrier concentration optimizations. It was found that the carrier concentration can be changed by altering the aging time of the precursor solution. X-ray photoelectron spectroscopy analysis showed that the concentration of metallic Sn4+ increased as the solution aging time increased. This made possible to explore the relationship between carrier concentration and thermoelectric power factor. After controlling Sn4+ concentrations, we report a power factor of 145.10 μW m−1 K−2 , along with electrical conductivity 106 S/cm and Seebeck coefficient of 117 μV/K, measured at room temperature.

Keywords

Perovskite CsSnI3 thermoelectric film precursor solution aging 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Conflict of interest

We do not have any kind of conflict to declare.

Supplementary material

11664_2019_7846_MOESM1_ESM.pdf (25 kb)
Supplementary material 1 (PDF 25 kb)

References

  1. 1.
    G. Xing, N. Mathews, S. Sun, S.S. Lim, Y.M. Lam, M. Gratzel, S. Mhaisalkar, and T.C. Sum, Science 342, 344 (2013).CrossRefGoogle Scholar
  2. 2.
    S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J.P. Alcocer, T. Leijtens, L.M. Herz, A. Petrozza, and H.J. Snaith, Science 342, 341 (2013).CrossRefGoogle Scholar
  3. 3.
    A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, J. Am. Chem. Soc. 131, 6050 (2009).CrossRefGoogle Scholar
  4. 4.
    T. Ye, X. Wang, X. Li, A.Q. Yan, S. Ramakrishna, and J. Xu, J. Mater. Chem. C 5, 1255 (2017).CrossRefGoogle Scholar
  5. 5.
    M.A. Haque, M.I. Nugraha, S.H.K. Paleti, and D. Baran, J. Phys. Chem. C 123, 14928 (2019).CrossRefGoogle Scholar
  6. 6.
    G. Schierning, Nat. Energy 3, 92 (2018).CrossRefGoogle Scholar
  7. 7.
    C.C. Stoumpos, C.D. Malliakas, and M.G. Kanatzidis, Inorg. Chem. 52, 9019 (2013).CrossRefGoogle Scholar
  8. 8.
    G. Rajendra Kumar, H.J. Kim, S. Karupannan, and K. Prabakar, J. Phys. Chem. C 121, 16447 (2017).CrossRefGoogle Scholar
  9. 9.
    I. Chung, J.-H. Song, J. Im, J. Androulakis, C.D. Malliakas, H. Li, A.J. Freeman, J.T. Kenney, and M.G. Kanatzidis, J. Am. Chem. Soc. 134, 8579 (2012).CrossRefGoogle Scholar
  10. 10.
    S. Saini, A.K. Baranwal, T. Yabuki, S. Hayase, and K. Miyazaki, MRS Adv. 4, 1719 (2019).CrossRefGoogle Scholar
  11. 11.
    W. Lee, H. Li, A.B. Wong, D. Zhang, M. Lai, Y. Yu, Q. Kong, E. Lin, J.J. Urban, J.C. Grossman, and P. Yang, Proc. Natl. Acad. Sci. 114, 8693 (2017).CrossRefGoogle Scholar
  12. 12.
    I. Chung, B. Lee, J. He, R.P.H. Chang, and M.G. Kanatzidis, Nature 485, 486 (2012).CrossRefGoogle Scholar
  13. 13.
    Y. Lin, Y. Fang, J. Zhao, Y. Shao, S.J. Stuard, M.M. Nahid, H. Ade, Q. Wang, J.E. Shield, N. Zhou, A.M. Moran, and J. Huang, Nat. Commun. 10, 1008 (2019).CrossRefGoogle Scholar
  14. 14.
    Y. El Ajjouri, F. Locardi, M. C. Gélvez-Rueda, M. Prato, M. Sessolo, M. Ferretti, F. C. Grozema, F. Palazon, and H. J. Bolink, Energy Technol. 1900788 (2019).Google Scholar
  15. 15.
    D. Sabba, H.K. Mulmudi, R.R. Prabhakar, T. Krishnamoorthy, T. Baikie, P.P. Boix, S. Mhaisalkar, and N. Mathews, J. Phys. Chem. C 119, 1763 (2015).CrossRefGoogle Scholar
  16. 16.
    Y. Zhou, H.F. Garces, B.S. Senturk, A.L. Ortiz, and N.P. Padture, Mater. Lett. 110, 127 (2013).CrossRefGoogle Scholar
  17. 17.
    J. D. Makinson, J. S. Lee, S. H. Magner, R. J. De Angelis, W. N. Weins, and a. S. Hieronymus, Adv. X-Ray Anal. 42, 407 (2000).Google Scholar
  18. 18.
    P. Muhammed Shafi and A. Chandra Bose, AIP Adv. 5, 057137 (2015).Google Scholar
  19. 19.
    M. Inoue and I. Hirasawa, J. Cryst. Growth 380, 169 (2013).CrossRefGoogle Scholar
  20. 20.
    X. Qiu, B. Cao, S. Yuan, X. Chen, Z. Qiu, Y. Jiang, Q. Ye, H. Wang, H. Zeng, J. Liu, and M.G. Kanatzidis, Sol. Energy Mater. Sol. Cells 159, 227 (2017).CrossRefGoogle Scholar
  21. 21.
    P. Xu, S. Chen, H.-J. Xiang, X.-G. Gong, and S.-H. Wei, Chem. Mater. 26, 6068 (2014).CrossRefGoogle Scholar
  22. 22.
    H. Tsai, W. Nie, Y.-H. Lin, J.C. Blancon, S. Tretiak, J. Even, G. Gupta, P.M. Ajayan, and A.D. Mohite, Adv. Energy Mater. 7, 1602159 (2017).CrossRefGoogle Scholar
  23. 23.
    A. K. Baranwal, S. Saini, Z. Wang, D. Hirotani, T. Yabuki, S. Iikubo, K. Miyazaki, and S. Hayase, Org. Electron. 76, 105488 (2020).Google Scholar
  24. 24.
    A.K. Baranwal, S. Kanaya, T.A.N. Peiris, G. Mizuta, T. Nishina, H. Kanda, T. Miyasaka, H. Segawa, and S. Ito, Chemsuschem 9, 2604 (2016).CrossRefGoogle Scholar
  25. 25.
    A.K. Baranwal, H. Kanda, N. Shibayama, and S. Ito, Sustain. Energy Fuels 2, 2778 (2018).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Ajay Kumar Baranwal
    • 1
    Email author
  • Shrikant Saini
    • 2
  • Zhen Wang
    • 3
  • Kengo Hamada
    • 3
  • Daisuke Hirotani
    • 3
  • Kohei Nishimura
    • 1
  • Muhammad Akmal Kamarudin
    • 1
  • Gaurav Kapil
    • 1
    • 5
  • Tomohide Yabuki
    • 2
  • Satoshi Iikubo
    • 3
  • Qing Shen
    • 4
  • Koji Miyazaki
    • 2
  • Shuzi Hayase
    • 1
    Email author
  1. 1.i-Powered Energy System Research CentreThe University of Electro-communicationsChofu, TokyoJapan
  2. 2.Department of Mechanical EngineeringKyushu Institute of TechnologyKitakyushuJapan
  3. 3.Graduate School of Life Science & Systems EngineeringKyushu Institute of TechnologyKitakyushuJapan
  4. 4.Graduate School of Informatics and EngineeringThe University of Electro-communicationsChofu, TokyoJapan
  5. 5.Research Centre for Advanced Science & TechnologyUniversity of TokyoTokyoJapan

Personalised recommendations