Formation of Intermetallic Compounds and Microstructure Evolution due to Isothermal Reactive Diffusion at the Interface Between Solid Co and Liquid Sn

  • Noritomo Odashima
  • Minho OEmail author
  • Masanori Kajihara


Co has been studied extensively by many research groups as an alternative material for underbump metallization, since Co–Sn compounds show better mechanical properties than Cu–Sn compounds. Information on reactive diffusion at the solid/liquid interface is considerably important to form mechanically and electrically reliable solder joints. In the present study, the kinetics of the reactive diffusion between solid Co and liquid Sn was experimentally examined using semiinfinite Co/Sn diffusion couples prepared by an isothermal bonding technique. Isothermal annealing of the diffusion couple was conducted at temperatures in the range of 523 K to 583 K for various times up to 96 h. An intermetallic layer formed at the original Co/Sn interface in the diffusion couple during annealing. One or two intermetallic compounds among α-CoSn3, β-CoSn3, and CoSn2 were identified, depending on the annealing temperature. The total thickness of the intermetallic layer was proportional to a power function of the annealing time. The overall growth rate of the intermetallic layer did not increase with increasing annealing temperature but was dependent on the kind of compound formed at the interface. The overall growth rate at 583 K was much slower than at lower annealing temperatures, since two compounds (CoSn2 and CoSn3) were identified at the interface, while only CoSn3 formed at 523 K to 563 K. This indicates that the interdiffusion coefficient of CoSn2 is much smaller than that of CoSn3. Based on the exponent of the power function and the microstructure evolution at the moving interface, the layer growth of the compounds was controlled by volume diffusion with spheroidal growth.


Reactive diffusion interface reaction intermetallic compounds Co-Sn compound Co-Sn system 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. 1.
    G. Vakanas, M. O, B. Dimcic, K. Vanstreels, B. Vandecasteele, I. De Preter, J. Derakhshandeh, K. Rebibis, M. Kajihara, I. De Wolf, and E. Beyne, Microelectron. Eng. 140, 72 (2015).Google Scholar
  2. 2.
    M. O, T. Suzuki and M. Kajihara, J. Electron. Mater. 47, 18 (2018).Google Scholar
  3. 3.
    R. Labie, W. Ruythooren, and J. Van Humbeeck, Intermetallics 15, 396 (2007).CrossRefGoogle Scholar
  4. 4.
    T. Takenaka, S. Kano, M. Kajihara, N. Kurokawa, and K. Sakamoto, Mater. Sci. Eng. A 396, 115 (2005).CrossRefGoogle Scholar
  5. 5.
    S. Kumar, C.A. Handwerker, and M.A. Dayananda, J. Phase Equilib. Diff. 32, 309 (2011).CrossRefGoogle Scholar
  6. 6.
    M. O, G. Vakanas, N. Moelans, M. Kajihara, and W. Zhang, Microelectron. Eng. 120, 133 (2014).Google Scholar
  7. 7.
    M. O, Y. Takamatsu and M. Kajihara, Mater. Trans. 55, 1058 (2014).CrossRefGoogle Scholar
  8. 8.
    S. Tian, J. Zhou, F. Xue, R. Cao, and F. Wang, J. Mater. Sci.: Mater. Electron. 29, 16388 (2018).Google Scholar
  9. 9.
    C. Wang, C. Kuo, S. Huang, and P. Li, Intermetallics 32, 57 (2013).CrossRefGoogle Scholar
  10. 10.
    C. Wang and S. Chen, Intermetallics 16, 524 (2008).CrossRefGoogle Scholar
  11. 11.
    A. Nakane, T. Suzuki, M. O, and M. Kajihara, Mater. Trans. 57, 838 (2016).CrossRefGoogle Scholar
  12. 12.
    P. Yang, Y. Lai, S. Jian, and J. Chen, in EPTC Conference Proceedings (2007), pp 1.Google Scholar
  13. 13.
    D.K. Misra, A. Bhardwaj, and S. Singh, J. Mater. Chem. 2, 11913 (2014).CrossRefGoogle Scholar
  14. 14.
    R. Labie, P. Ratchev, and E. Beyne, in ECTC Conference Proceedings (2005), pp 449.Google Scholar
  15. 15.
    G.P. Vassilev, K.I. Lilova, and J.C. Gachon, Intermetallics 15, 1156 (2007).CrossRefGoogle Scholar
  16. 16.
    H. Okamoto, J. Phase Equilib. Diff. 27, 308 (2006).CrossRefGoogle Scholar
  17. 17.
    M. Kajihara, Acta Mater. 52, 1193 (2004).CrossRefGoogle Scholar
  18. 18.
    A. Lang and W. Jeitschko, Z. Metallkd. 87, 759 (1996).Google Scholar
  19. 19.
    A. Yakymovych, I. Shtablavyi, and S. Mudry, J. Alloys Compd. 610, 438 (2014).CrossRefGoogle Scholar
  20. 20.
    Y. Takamatsu, M. O, and M. Kajihara, Mater. Trans. 58, 567 (2017).CrossRefGoogle Scholar
  21. 21.
    Y. Takamatsu, M. O, and M. Kajihara, Mater. Trans. 58, 16 (2017).CrossRefGoogle Scholar
  22. 22.
    Y. Yato and M. Kajihara, Mater. Sci. Eng. A 428, 276 (2006).CrossRefGoogle Scholar
  23. 23.
    C. Wang and C. Kuo, J. Electron. Mater. 39, 1303 (2010).CrossRefGoogle Scholar
  24. 24.
    W. Zhu, H. Liu, J. Wang, and Z. Jin, J. Alloys Compd. 456, 113 (2008).CrossRefGoogle Scholar
  25. 25.
    Y. Tang, S.M. Luo, Z.H. Li, C.J. Hou, and G.Y. Li, J. Electron. Mater. 47, 5913 (2018).CrossRefGoogle Scholar
  26. 26.
    K. Meguro, M.O, and M. Kajihara, J. Mater. Sci. 47, 4955 (2012).Google Scholar
  27. 27.
    G.P. Ivantsov, Dokl. Akad. Nauk. S.S.S.R. 58, 567 (1947).Google Scholar
  28. 28.
    G. Horvay and J.W. Cahn, Acta Metall. 9, 695 (1961).CrossRefGoogle Scholar
  29. 29.
    R. Trivedi, Acta Metall. 18, 287 (1970).CrossRefGoogle Scholar
  30. 30.
    P.E.J. Rivera-Díaz-del-Castillo and H.K.D.H. Bhadeshia, Mater. Sci. Technol. 17, 25 (2001).Google Scholar
  31. 31.
    P.E.J. Rivera-Díaz-del-Castillo and H.K.D.H. Bhadeshia, Mater. Sci. Technol. 17, 30 (2001).Google Scholar
  32. 32.
    A. Furuto and M. Kajihara, Mater. Trans. 49, 294 (2008).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Graduate SchoolTokyo Institute of TechnologyYokohamaJapan
  2. 2.Department of Materials Science and EngineeringTokyo Institute of TechnologyYokohamaJapan

Personalised recommendations