Electrodeposition and Photocatalytic Performance of Self-Assembled Tulip Flower/Mulberry-Like CuO Nanostructures

  • Tinglan Wang
  • Wei Zhang
  • Lingyue Wang
  • Yubo Zhang
  • Yongqian WangEmail author


Copper oxide as a p-type semiconductor has been widely used in the field of catalysis. Monoclinic CuO nanostructures with various shapes have been synthesized on indium tin oxide-coated glass substrates via electrodeposition with annealing at 400°C for 2 h, and the influence of different electrodeposition parameters on their properties investigated. X-ray diffraction analysis and scanning electron microscopy were used to characterize the phase structure and surface morphology, respectively, of the synthesized CuO films, and ultraviolet–visible spectrophotometry was used to study their optical absorption. Moreover, we measured their photocatalytic properties using photodegradation tests under light irradiation with methylene blue as a simulated organic pollutant. The results showed that the light absorbance of the CuO nanostructure was improved in the visible region. The photodegradation rate for methylene blue reached 93% in 210 min. The prepared nanomaterials are promising for use as good photocatalysis in the field of environmental treatment.


CuO films Electrodeposition photocatalytic properties growth mechanism 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the Open Project Foundation of Engineering Research Center of Nano-Geomaterials of Ministry of Education (NGM2016KF005).


  1. 1.
    M.N. Chong, B. Jin, C.W.K. Chow, and C. Saint, Water Res. 44, 2997 (2010).CrossRefGoogle Scholar
  2. 2.
    S. Wooh, N. Encinas, D. Vollmer, and H. Butt, Adv. Mater. 29, 1604637 (2017).CrossRefGoogle Scholar
  3. 3.
    M. Pelaez, N.T. Nolan, S.C. Pillai, M.K. Seery, P. Falaras, A.G. Kontos, P.S.M. Dunlop, J.W.J. Hamilton, J.A. Byrne, K. Oshea, M.H. Entezari, and D.D. Dionysiou, Appl. Catal., B 125, 331 (2012).CrossRefGoogle Scholar
  4. 4.
    P.C. Gao, Q. Ma, D.F. Ding, D.G. Wang, X.D. Lou, T.Y. Zhai, and F. Xia, Nat. Commun. 9, 4557 (2018).CrossRefGoogle Scholar
  5. 5.
    X.Q. Liu, Z. Li, C.X. Zhao, W. Zhao, J.B. Yang, Y. Wang, and F. Li, J. Colloid Interface Sci. 419, 9 (2014).CrossRefGoogle Scholar
  6. 6.
    R.Z. Zhan, J. Chen, S.Z. Deng, and N.S. Xu, J. Vac. Sci. Technol. B 28, 558 (2010).CrossRefGoogle Scholar
  7. 7.
    A. Nezamzadeh-Ejhieh and Z. Salimi, Appl. Catal. A 390, 110 (2010).CrossRefGoogle Scholar
  8. 8.
    M.M. Momeni, M. Mirhosseini, Z. Nazari, A. Kazempour, and M. Hakimiyan, J. Mater. Sci.: Mater. Electron. 27, 8131 (2016).Google Scholar
  9. 9.
    S.K. Shinde, D.P. Dubal, G.S. Ghodake, and V.J. Fulari, RSC Adv. 5, 4443 (2015).CrossRefGoogle Scholar
  10. 10.
    X. Wang, C. Ge, K. Chen, and Y.X. Zhang, Electrochim. Acta 259, 225 (2018).CrossRefGoogle Scholar
  11. 11.
    Z.J. Li, J.Q. Wang, N.N. Wang, S.N. Yan, W. Liu, Y.Q. Fu, and Z.G. Wang, J. Alloys Compd. 725, 1136 (2017).CrossRefGoogle Scholar
  12. 12.
    S.R. Jia, Y. Wang, X.Q. Liu, S.Q. Zhao, W. Zhao, Y.Q. Huang, Z. Li, Z. Lin, and Z.Q. Lin, Nano Energy 59, 229 (2019).CrossRefGoogle Scholar
  13. 13.
    H.W. Qin, Z.L. Zhang, X. Liu, Y.J. Zhang, and J.F. Hu, J. Magn. Magn. Mater. 322, 1994 (2010).CrossRefGoogle Scholar
  14. 14.
    K. Kumar, A. Priya, A. Arun, S. Hait, and A. Chowdhury, Mater. Chem. Phys. 226, 106 (2019).CrossRefGoogle Scholar
  15. 15.
    N. Budhiraja, Sapna, V. Kumar, M. Tomar, V. Gupta, and S.K. Singh, J. Inorg. Organomet. Polym. Mater. 29, 1067 (2019).Google Scholar
  16. 16.
    M.J. Song, S.W. Hwang, and D. Whang, Talanta 80, 1648 (2010).CrossRefGoogle Scholar
  17. 17.
    N. Mukherjee, B. Show, S.K. Maji, U. Madhu, S.K. Bhar, B.C. Mitra, G.G. Khan, and A. Mondal, Mater. Lett. 65, 3248 (2011).CrossRefGoogle Scholar
  18. 18.
    L.M. Si, L.H. Yue, and D.L. Jin, Cryst. Res. Technol. 46, 986 (2011).CrossRefGoogle Scholar
  19. 19.
    T. Koh, E. O’Hara, and M.J. Gordon, J. Cryst. Growth 363, 69 (2013).CrossRefGoogle Scholar
  20. 20.
    B. Yan, Y.Q. Wang, T.T. Jiang, and X.L. Wu, J. Mater. Sci.: Mater. Electron. 27, 4035 (2016).Google Scholar
  21. 21.
    A. Mahmood, F. Tezcan, and G. Kardaş, Int. J. Hydrogen Energy 42, 23268 (2017).CrossRefGoogle Scholar
  22. 22.
    Y.G. Zhang, S.T. Wang, X.B. Li, L.Y. Chen, Y.T. Qian, and Z.D. Zhang, J. Cryst. Growth 291, 196 (2006).CrossRefGoogle Scholar
  23. 23.
    Y.Q. Wang, T.T. Jiang, D.W. Meng, J. Yang, Y.C. Li, Q. Ma, and J. Han, Appl. Surf. Sci. 317, 414 (2014).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Tinglan Wang
    • 1
  • Wei Zhang
    • 1
  • Lingyue Wang
    • 1
  • Yubo Zhang
    • 1
  • Yongqian Wang
    • 1
    Email author
  1. 1.Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and ChemistryChina University of GeosciencesWuhanPeople’s Republic of China

Personalised recommendations