Advertisement

Design, Analysis and Finite Element Modeling of Solidly Mounted Film Bulk Acoustic Resonator for Gas Sensing Applications

  • Arun K. JoharEmail author
  • Tarun Varma
  • C. Periasamy
  • Ajay Agarwal
  • D. Boolchandani
Article
  • 6 Downloads

Abstract

This paper reports the effect of the design parameters of a solidly mounted film bulk acoustic resonator (SMFBAR) for better gas sensing performance. The electrical equivalent circuit of the proposed device has been developed with the help of a Butterworth Van-Dyke (BVD) circuit. The electro-mechanical response of the SMFBAR has been obtained with the help of 3-D finite element method (FEM) analysis. The analytical modeling and FEM simulation results are compared. The physical parameters of the proposed design such as piezoelectric layer material, its thickness, active area of the device and sensing layer thickness affecting the characteristics of the SMFBAR have been investigated in detail. To achieve enhanced sensitivity, the variation of square active area has been analysed with one side dimension ranging from 700 μm to 300 μm. Gas sensing performance of the proposed sensor is tested by exposing toluene gas concentration ranging from 0 ppm to 500 ppm and enhanced sensitivity of 20 kHz/ppm has been achieved and reported. Also, it is reported that the variation in ratio of electrode layer thickness to piezoelectric layer thickness results in improvement of coupling coefficient (keff2) up to 7.46%.

Keywords

Film bulk acoustic resonator Butterworth Van-Dyke finite element method piezoelectric 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The author would like to acknowledge the support of the Ministry of Electronics and Information Technology (MeitY), Government of India for providing a fellowship grant under Visvesvaraya PhD Scheme for Electronics and IT. The authors also acknowledge support of Material Research Centre (MRC), Malaviya National Institute of Technology Jaipur, for providing the simulation facilities.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    D. Cannatà, M. Benetti, F. Di Pietrantonio, E. Verona, A. Palla-Papavlu, V. Dinca, M. Dinescu, and T. Lippert, Sens. Actuators B Chem. 173, 32 (2012).CrossRefGoogle Scholar
  2. 2.
    F.H. Villa-López, Thesis (University of Warwick, 2017).Google Scholar
  3. 3.
    W. Pang, H. Zhao, E.S. Kim, H. Zhang, H. Yu, and X. Hu, Lab Chip 12, 29 (2012).CrossRefGoogle Scholar
  4. 4.
    J.D.N. Cheeke, Fundamentals and Applications of Ultrasonic Waves (Boca Raton: CRC Press, 2016).Google Scholar
  5. 5.
    S. Tadigadapa and K. Mateti, Meas. Sci. Technol. 20, 092001 (2009).CrossRefGoogle Scholar
  6. 6.
    K. Lakin and J. Wang, Appl. Phys. Lett. 38, 125 (1981).CrossRefGoogle Scholar
  7. 7.
    M. Penza, P. Aversa, G. Cassano, D. Suriano, W. Wlodarski, M. Benetti, D. Cannata, F. Di Pietrantonio, and E. Verona, IEEE Trans. Electron. Dev. 55, 1237 (2008).CrossRefGoogle Scholar
  8. 8.
    X. He, L. Garcia-Gancedo, P. Jin, J. Zhou, W. Wang, S. Dong, J. Luo, A. Flewitt, and W. Milne, J. Micromech. Microeng. 22, 125005 (2012).CrossRefGoogle Scholar
  9. 9.
    X. Qiu, J. Zhu, J. Oiler, C. Yu, Z. Wang, and H. Yu, Appl. Phys. Lett. 94, 151917 (2009).CrossRefGoogle Scholar
  10. 10.
    Z. Zhang, J. Liang, D. Zhang, W. Pang, and H. Zhang, Micromachines 6, 1306 (2015).CrossRefGoogle Scholar
  11. 11.
    B.A. Buchine, W.L. Hughes, F.L. Degertekin, and Z.L. Wang, Nano Lett. 6, 1155 (2006).CrossRefGoogle Scholar
  12. 12.
    Y. Zhang, J. Luo, A.J. Flewitt, Z. Cai, and X. Zhao, Biosens. Bioelectron. 116, 1 (2018).CrossRefGoogle Scholar
  13. 13.
    W. Liu, H. Zhang, H. Zhao, Z. Tang, Y. Wang, C. Sun, W. Pang, and X. Duan, Sens. Actuators B Chem. 243, 775 (2017).CrossRefGoogle Scholar
  14. 14.
    I. Voiculescu and A.N. Nordin, Biosens. Bioelectron. 33, 1 (2012).CrossRefGoogle Scholar
  15. 15.
    T. Makkonen, A. Holappa, J. Ella, and M. Salomea, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48, 1241 (2001).CrossRefGoogle Scholar
  16. 16.
    A.K. Johar, R. Patel, C. Periasamy, A. Agarwal, and D. Boolchandani, Mater. Res. Express 6, 015033 (2018).CrossRefGoogle Scholar
  17. 17.
    A. Flewitt, J. Luo, Y.Q. Fu, L. Garcia-Gancedo, X. Du, J. Lu, X. Zhao, E. Iborra, M. Ramos, and W. Milne, J. Nonnewton. Fluid Mech. 222, 209 (2015).CrossRefGoogle Scholar
  18. 18.
    D. Chen, J.J. Wang, and Y. Xu, Sens. Actuators B Chem. 159, 234 (2011).CrossRefGoogle Scholar
  19. 19.
    S. Fanget, S. Hentz, P. Puget, J. Arcamone, M. Matheron, E. Colinet, P. Andreucci, L. Duraffourg, E. Myers, and M. Roukes, Sens. Actuators B Chem. 160, 804 (2011).CrossRefGoogle Scholar
  20. 20.
    A. Dorsey, edited by A. f. T. S. a. D. Registry (Division of Toxicology and Human Health Sciences, Environmental Toxicology Branch,1600 Clifton Road NE,Mailstop F-57, Atlanta, Georgia 30329–4027, 2000).Google Scholar
  21. 21.
    J.W. Grate, S.N. Kaganove, and V.R. Bhethanabotla, Anal. Chem. 70, 199 (1998).CrossRefGoogle Scholar
  22. 22.
    N. Touze-Foltz, S. Rosin-Paumier, L. Mazéas, and A. Guenne, Geo-frontiers 2011. Advances in geotechnical engineering. Dallas, Texas, March 13–16, 2011, 1121 (2011).Google Scholar
  23. 23.
    N. Nguyen, A. Johannessen, S. Rooth, and U. Hanke, Ultrasonics 94, 92 (2019).CrossRefGoogle Scholar
  24. 24.
    Y. Kumar, K. Rangra, and R. Agarwal, Int. J. Eng. Trends Technol. 28, 294 (2015).CrossRefGoogle Scholar
  25. 25.
    T. Makkonen, A. Holappa, J. Ella, and M.M. Salomea, et al., IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48, 1241 (2001).CrossRefGoogle Scholar
  26. 26.
    H.-Y. Kim, K.-B. Kim, S.H. Cho, and Y.-I. Kim, Surf. Coat. Technol. 211, 143 (2012).CrossRefGoogle Scholar
  27. 27.
    S.-H. Lee, J.-K. Lee, and K.H. Yoon, J. Vac. Sci. Technol. A Vac., Surf. Films 21, 1 (2003).CrossRefGoogle Scholar
  28. 28.
    Y. Yoshino, J. Appl. Phys. 105, 061623 (2009).CrossRefGoogle Scholar
  29. 29.
    Y.Q. Fu, J.-S. Cherng, J. Luo, M. Desmulliez, Y. Li, A. Walton, and F. Placido, Acoust. Waves. 466, 263 (2010)Google Scholar
  30. 30.
    C.-M. Yang, K. Uehara, S.-K. Kim, S. Kameda, H. Nakase, and K. Tsubouchi, in Highly c-Axis-Oriented AlN Film Using MOCVD for 5 GHz-Band FBAR Filter, (IEEE, 2003), p. 170Google Scholar
  31. 31.
    T. Pensala, M. Ylilammi, J. Meltaus, and K. Kokkonen, in P2G-5 Area and Dispersion Dependence of Vibration Shape and Coupling Coefficient in Thin Film BAW Resonators (IEEE, 2007), p. 1661Google Scholar
  32. 32.
    J.K. Park and M. Nibras, Water Environ. Res. 65, 227 (1993).CrossRefGoogle Scholar
  33. 33.
    J. Xiong, X.L. Sun, P. Guo, D. Zheng, and H.S. Gu, Appl. Phys. A 116, 1573 (2014).CrossRefGoogle Scholar
  34. 34.
    Wei Pang, Menglun Zhang, and Ji Liang, Micro Electro Mechanical Systems (Singapore: Springer, 2017).Google Scholar
  35. 35.
    R. Gabl, E. Green, M. Schreiter, H.D. Feucht, H. Zeininger, R. Primig, D. Pitzer, G. Eckstein, and W. Wersing, in SENSORS, vol 2 (IEEE, 2003). p 1184–1188Google Scholar
  36. 36.
    D. Chen, Y. Xu, J. Wang, and L. Zhang, Sens. Actuators B Chem. 150, 483 (2010).CrossRefGoogle Scholar
  37. 37.
    M.L. Johnston, H. Edrees, I. Kymissis, and K.L. Shepard, in IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS) (IEEE, 2012), pp. 846–849Google Scholar
  38. 38.
    R. Patel, M. Patel, D. Boolchandani, and K. Rangra, J. Micro Nanolithogr. MEMS MOEMS 16, 025002 (2017).CrossRefGoogle Scholar
  39. 39.
    D. Chen, J. Wang, D. Li, Y. Xu, and Z. Li, Sens. Actuators, A 165, 379 (2011).CrossRefGoogle Scholar
  40. 40.
    D. Chen, L. Yang, W. Yu, M. Wu, W. Wang, and H. Wang, Micromachines 9, 62 (2018).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringMalaviya National Institute of Technology JaipurJaipurIndia
  2. 2.Nano Biosensors GroupCSIR-Central Electronics Engineering Research Institute (CEERI)PilaniIndia

Personalised recommendations