Advertisement

Effect of Zinc Addition on the Evolution of Interfacial Intermetallic Phases at Near-Eutectic 50In-50Sn/Cu Interfaces

  • Jingze WangEmail author
  • Dongxin Mao
  • Hongtao Chen
  • Xiaohua Zhang
  • Lei Shi
  • Jianbing Wang
Article
  • 3 Downloads

Abstract

The effect of Zn addition on the evolution of IMC at near-eutectic 50In-50Sn/Cu interfaces was investigated at 210°C. In 50In-(50-x)Sn-xZn/Cu(x = 0, 6) diffusion couples, two types of intermetallic compound layers were observed: ε-Cu3(In,Sn) adjacent to the Cu substrate and η-Cu2(In,Sn) adjacent to the solder, which were formed though a solid–solid diffusion reaction and solid–liquid reaction, respectively. The growth of ε-Cu3(In,Sn) was at the expense of η-Cu2(In,Sn). In 50In-44Sn-6Zn/Cu diffusion couple, the growth of ε-Cu3(In,Sn) was grain-boundary diffusion controlled and n (the time constant) was 0.31. But in the 50In-50Sn/Cu diffusion couple, due to the slow growth of η-Cu2(In,Sn), the time constant of ε-Cu3(In,Sn) was down to 0.19. With the addition of Zn in the 50In-50Sn/Cu couple, the diffusion of Cu was alleviated. Zn exhibited high activity and moderated the dissipation of the main atoms (In/Sn) in the solder. So the growth of Cu3(In,Sn) was suppressed significantly.

Keywords

ε-Cu3(In, Sn) η-Cu2(In, Sn) intermetallic compound evolution power-law relationship 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors would like to acknowledge the financial support provided by the Harbin Youth Reserve Talents Project [Grant Number RC2014QN017012]. The authors would like to thank Professor Chen and Professor Ma at the center for material analysis and testing, who provided experimental help.

References

  1. 1.
    Y. Li, F. Wu, and Y.C. Chan, J. Mater. Sci. Mater. Electron. 26, 8522 (2015).CrossRefGoogle Scholar
  2. 2.
    S.K. Lin, R.B. Chang, S.W. Chen, M.Y. Tsai, and C.M. Hsu, J. Mater. Sci. 49, 3805 (2014).CrossRefGoogle Scholar
  3. 3.
    G. Yoo and J.H. Park, J. Korean Phys. Soc. 65, 960 (2014).CrossRefGoogle Scholar
  4. 4.
    X. Liu, R.W. Davis, L.C. Hughes, M.H. Rasmussen, R. Bhat, C.E. Zah, and J. Stradling, J. Appl. Phys. 100, 013104 (2006).CrossRefGoogle Scholar
  5. 5.
    J.C. Leong, L.C. Tsao, C.J. Fang, and C.P. Chu, J. Mater. Sci. Mater. Electron. 22, 1443 (2011).CrossRefGoogle Scholar
  6. 6.
    S.Y. Chang, L.C. Tsao, M.W. Wu, and C.W. Chen, J. Mater. Sci. Mater. Electron. 23, 100 (2011).CrossRefGoogle Scholar
  7. 7.
    J. Pstruś, T. Gancarz, and P. Fima, Adv. Mater. Sci. Eng. 2017, 1 (2017).CrossRefGoogle Scholar
  8. 8.
    Y.K. Jee, Y.H. Ko, and J. Yu, J. Mater. Res. 22, 1879 (2007).CrossRefGoogle Scholar
  9. 9.
    T. Xu, X. Hu, Y. Li, and X. Jiang, J. Mater. Sci. Mater. Electron. 28, 18515 (2017).CrossRefGoogle Scholar
  10. 10.
    S. Sommadossi, W. Gust, and E.J. Mittemeijer, Mater. Chem. Phys. 77, 924 (2002).CrossRefGoogle Scholar
  11. 11.
    Y. Yao, J. Zhou, F. Xue, and X. Chen, J. Alloy Compd. 682, 627 (2016).CrossRefGoogle Scholar
  12. 12.
    C.H. Wang and K.T. Li, Mater. Chem. Phys. 164, 223 (2015).CrossRefGoogle Scholar
  13. 13.
    P. Šebo, Z. Moser, P. Švec, D. Janičkovič, E. Dobročka, W. Gasior, and J. Pstru, J. Alloy Compd. 480, 409 (2009).CrossRefGoogle Scholar
  14. 14.
    T.H. Chuang, C.L. Yu, S.Y. Chang, and S.S. Wang, J. Electron. Mater. 31, 640 (2002).CrossRefGoogle Scholar
  15. 15.
    D.G. Kim and S.B. Jung, J. Alloy Compd. 386, 151 (2005).CrossRefGoogle Scholar
  16. 16.
    S.K. Lin, T.Y. Chung, S.W. Chen, and C.H. Chang, J. Mater. Res. 24, 2628 (2009).CrossRefGoogle Scholar
  17. 17.
    S.K. Lin, C.F. Yang, S.H. Wu, and S.W. Chen, J. Electron. Mater. 37, 498 (2008).CrossRefGoogle Scholar
  18. 18.
    Y. Tang, S.M. Luo, Z.H. Li, C.J. Hou, and G.Y. Li, J. Electron. Mater. 47, 5913 (2018).CrossRefGoogle Scholar
  19. 19.
    R.A. Gagliano and M.E. Fine, JOM-US 53, 33 (2001).CrossRefGoogle Scholar
  20. 20.
    K. Kanlayasiri and K. Sukpimai, J. Alloy Compd. 668, 169 (2016).CrossRefGoogle Scholar
  21. 21.
    D.L. Wang, Y. Yuan, and L. Luo, J. Mater. Sci. Mater. Electron. 23, 61 (2011).CrossRefGoogle Scholar
  22. 22.
    L.P. Mo, F.S. Wu, C.Q. Liu, in 2015 IEEE 65th Electronic Components and Technology Conference (2015), pp. 1854–1858.Google Scholar
  23. 23.
    D. Sarwono and K.L. Lin, J. Electron. Mater. 48, 99 (2018).CrossRefGoogle Scholar
  24. 24.
    C.H. Wang and C.Y. Kuo, Mater. Chem. Phys. 130, 651 (2011).CrossRefGoogle Scholar
  25. 25.
    S.K. Kang, D. Leonard, D.Y. Shih, L. Gignac, D.W. Henderson, S. Cho, and J. Yu, J. Electron. Mater. 35, 479 (2006).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringHarbin University of Science and TechnologyHarbinChina

Personalised recommendations