Advertisement

Magnetic Dodecahedral CoC-Decorated Reduced Graphene Oxide as Excellent Electromagnetic Wave Absorber

  • Hongfang Qiu
  • Xiaoyu Zhu
  • Ping ChenEmail author
  • Sen Yang
  • Xiang Guo
  • Jialiang Liu
  • Xiuling Zhu
Article

Abstract

A two-step method has been adopted to synthesize cobalt nanoclusters in carbon (CoC)-decorated reduced graphene oxide (rGO) from graphene oxide (GO) and ZIF-67 as an excellent stable electromagnetic wave (EMW) absorber. Firstly, the electrostatic force between GO and Co2+ gave rise to in situ growth of ZIF-67 on GO (ZIF-67–GO). Then CoC–rGO was obtained by calcination of ZIF-67–GO hybrids. The ligand is introduced as the nitrogen source to GO. The crystal structure, chemical composition, and magnetic properties of CoC–rGO were investigated by x-ray powder diffraction analysis, Fourier-transform infrared (FT-IR) spectroscopy, Raman spectroscopy, x-ray photoelectron spectroscopy, and vibrating-sample magnetometry. The morphology was observed by scanning electron microscopy and transmission electron microscopy. By adjusting the ratio of GO to ZIF-67, the electromagnetic parameters of CoC–rGO can be optimized. It was found that the sample consisting of 10 wt.% CoC–rGO-2 in a paraffin matrix exhibited excellent EMW absorption performance, reaching a minimum reflection loss (RLmin) of −44.77 dB with thickness of 2.1 mm and an effective bandwidth (RL ≤ −10 dB) of up to 5.2 GHz at thickness of 1.8 mm. The results of this study open an effective and simple avenue for the design of EMW absorbers using metal–organic framework (MOF) and low-cost carbon materials.

Keywords

Electrostatic force CoC–rGO hybrids EMW absorption 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by the National Defense key program Fundamental Research Program (No. A35201XXXXX), National Natural Science Foundation of China (No. 51303106), Fundamental Research Funds for the Central Universities (DUT18GF107), Xingliao Elite Program Project (Special Professor of Liaoning Province-2018), Aviation Science Foundation (No. 20173754009), and LiaoNing Revitalization Talents Program (Nos. 1802085 and 1807003).

Conflict of Interest

The authors declare that they have no conflicts of interest.

Supplementary material

11664_2019_7837_MOESM1_ESM.pdf (805 kb)
Supplementary material 1 (PDF 805 kb)

References

  1. 1.
    I S Group, Int. J. Epidemiol. 39, 675 (2010).CrossRefGoogle Scholar
  2. 2.
    I.-L. Hansteen, L. Lageide, K.O. Clausen, V. Haugan, M. Svendsen, J.G. Eriksen, R. Skiaker, E. Hauger, A.I. Vistnes, and E.H. Kure, Anticancer Res. 29, 2885 (2009).Google Scholar
  3. 3.
    C. Luo, W. Duan, X. Yin, and J. Kong, J. Phys. Chem. C 120, 18721 (2016).CrossRefGoogle Scholar
  4. 4.
    L. Peng, J. Zhang, Z. Xue, B. Han, J. Li, and G. Yang, Chem. Commun. (Cambridge) 49, 11695 (2013).CrossRefGoogle Scholar
  5. 5.
    J. Li, L. Qi, and H. Li, J. Phys. Chem. C 120, 22865 (2016).CrossRefGoogle Scholar
  6. 6.
    M. Zhang, X.-X. Wang, W.-Q. Cao, J. Yuan, and M.-S. Cao, Adv. Opt. Mater. 7, 1900689 (2019).CrossRefGoogle Scholar
  7. 7.
    H.M. Kim, K. Kim, C.Y. Lee, J. Joo, S.J. Cho, H.S. Yoon, D.A. Pejaković, J.W. Yoo, and A.J. Epstein, Appl. Phys. Lett. 84, 589 (2004).CrossRefGoogle Scholar
  8. 8.
    M. Lu, W. Cao, H. Shi, X. Fang, J. Yang, Z. Hou, H. Jin, W. Wang, J. Yuan, and M. Cao, J. Mater. Chem. A 2, 10540 (2014).CrossRefGoogle Scholar
  9. 9.
    Y. Li, F. Qin, L. Quan, H. Wei, Y. Luo, H. Wang, and H.-X. Peng, Carbon 153, 447 (2019).CrossRefGoogle Scholar
  10. 10.
    H. Qin, Q. Liao, G. Zhang, Y. Huang, and Y. Zhang, Appl. Surf. Sci. 286, 7 (2013).CrossRefGoogle Scholar
  11. 11.
    L. Liu, Y. Duan, L. Ma, S. Liu, and Z. Yu, Appl. Surf. Sci. 257, 842 (2010).CrossRefGoogle Scholar
  12. 12.
    D. Min, W. Zhou, Y. Qing, F. Luo, and D. Zhu, J. Electron. Mater. 46, 4903 (2017).CrossRefGoogle Scholar
  13. 13.
    J. Zenga, H. Fan, Y. Wang, S. Zhang, J. Xue, and C. Zhang, J. Alloys Compd. 524, 59 (2012).CrossRefGoogle Scholar
  14. 14.
    X. Wang, X. Huang, Z. Chen, X. Liao, C. Liu, and B. Shi, J. Mater. Chem. C 3, 10146 (2015).CrossRefGoogle Scholar
  15. 15.
    J. Yan, Y. Huang, C. Wei, N. Zhang, and P. Liu, Compos. A 99, 121 (2017).CrossRefGoogle Scholar
  16. 16.
    X. Sun, J. He, G. Li, J. Tang, T. Wang, Y. Guo, and H. Xue, J. Mater. Chem. C 1, 765 (2013).CrossRefGoogle Scholar
  17. 17.
    M. Zhang, J. Zhang, X. Lv, L. Zhang, Y. Wei, S. Liu, Y. Shi, and C. Gong, J. Mater. Sci.: Mater. Electron. 29, 5496 (2018).Google Scholar
  18. 18.
    O. Balci, E.O. Polat, N. Kakenov, and C. Kocabas, Nat. Commun. 6, 6628 (2015).CrossRefGoogle Scholar
  19. 19.
    B. Wen, M. Cao, M. Lu, W. Cao, H. Shi, J. Liu, X. Wang, H. Jin, X. Fang, W. Wang, and J. Yuan, Adv. Mater. 26, 3484 (2014).CrossRefGoogle Scholar
  20. 20.
    C.N. Rao, A.K. Sood, K.S. Subrahmanyam, and A. Govindaraj, Angew. Chem. Int. Ed. 48, 7752 (2009).CrossRefGoogle Scholar
  21. 21.
    A.K. Geim and K.S. Novoselov, Nat. Mater. 6, 183 (2007).CrossRefGoogle Scholar
  22. 22.
    D.A. Dikin, S. Stankovich, E.J. Zimney, R.D. Piner, G.H. Dommett, G. Evmenenko, S.T. Nguyen, and R.S. Ruoff, Nature 448, 457 (2007).CrossRefGoogle Scholar
  23. 23.
    D.R. Dreyer, S. Park, C.W. Bielawski, and R.S. Ruoff, Chem. Soc. Rev. 39, 228 (2010).CrossRefGoogle Scholar
  24. 24.
    L. Kong, X. Yin, Y. Zhang, X. Yuan, Q. Li, F. Ye, L. Cheng, and L. Zhang, J. Phys. Chem. C 117, 19701 (2013).CrossRefGoogle Scholar
  25. 25.
    J. Feng, Y. Hou, Y. Wang, and L. Li, ACS Appl. Mater. Interfaces 9, 14103 (2017).CrossRefGoogle Scholar
  26. 26.
    H. Yuan, F. Yan, C. Li, C. Zhu, X. Zhang, and Y. Chen, ACS Appl. Mater. Interfaces 10, 1399 (2018).CrossRefGoogle Scholar
  27. 27.
    H.L. Jiang, B. Liu, Y.Q. Lan, K. Kuratani, T. Akita, H. Shioyama, F. Zong, and Q. Xu, J. Am. Chem. Soc. 133, 11854 (2011).CrossRefGoogle Scholar
  28. 28.
    S.J. Yang, T. Kim, J.H. Im, Y.S. Kim, K. Lee, H. Jung, and C.R. Park, Chem. Mater. 24, 464 (2012).CrossRefGoogle Scholar
  29. 29.
    B. Li, H.M. Wen, Y. Cui, W. Zhou, G. Qian, and B. Chen, Adv. Mater. 28, 8819 (2016).CrossRefGoogle Scholar
  30. 30.
    T. Wang, Q. Zhou, X. Wang, J. Zheng, and X. Li, J. Mater. Chem. A 3, 16435 (2015).CrossRefGoogle Scholar
  31. 31.
    S. Zhong, C. Zhan, and D. Cao, Carbon 85, 51 (2015).CrossRefGoogle Scholar
  32. 32.
    K.S. Park, Z. Ni, A.P. Cote, J.Y. Choi, R. Huang, F.J. Uribe-Romo, H.K. Chae, M. O’Keeffe, and O.M. Yaghi, Proc. Natl. Acad. Sci. USA 103, 10186 (2006).CrossRefGoogle Scholar
  33. 33.
    B. Quan, X. Liang, G. Ji, J. Ma, P. Ouyang, H. Gong, G. Xu, and Y. Du, ACS Appl. Mater. Interfaces 9, 9964 (2017).CrossRefGoogle Scholar
  34. 34.
    Y. Lü, Y. Wang, H. Li, Y. Lin, Z. Jiang, Z. Xie, Q. Kuang, and L. Zheng, ACS Appl. Mater. Interfaces 7, 13604 (2015)CrossRefGoogle Scholar
  35. 35.
    Y. Yin, X. Liu, X. Wei, R. Yu, and J. Shui, ACS Appl. Mater. Interfaces 8, 34686 (2016).CrossRefGoogle Scholar
  36. 36.
    D. Xu, X. Xiong, P. Chen, Q. Yu, H. Chu, S. Yang, and Q. Wang, J. Magn. Magn. Mater. 469, 428 (2019).CrossRefGoogle Scholar
  37. 37.
    Q. Zeng, P. Chen, Q. Yu, H.R. Chu, X.H. Xiong, D.W. Xu, and Q. Wang, Sci. Rep. 7, 8388 (2017).CrossRefGoogle Scholar
  38. 38.
    S. Yang, D. Xu, P. Chen, H. Qiu, and X. Guo, J. Mater. Sci.: Mater. Electron. 29, 19443 (2018).Google Scholar
  39. 39.
    L. Liu, L. Wang, Q. Li, X. Yu, X. Shi, J. Ding, W. You, L. Yang, Y. Zhang, and R. Che, ChemNanoMat 5, 558 (2019).CrossRefGoogle Scholar
  40. 40.
    J. Yuan, Q. Liu, S. Li, Y. Lu, S. Jin, K. Li, H. Chen, and H. Zhang, Synth. Met. 228, 32 (2017).CrossRefGoogle Scholar
  41. 41.
    J. William, S. Hummers, and R.E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958).CrossRefGoogle Scholar
  42. 42.
    Z. Jiang, Z. Li, Z. Qin, H. Sun, X. Jiao, and D. Chen, Nanoscale 5, 11770 (2013).CrossRefGoogle Scholar
  43. 43.
    D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, and J.M. Tour, ACS Nano 4, 4806 (2010).CrossRefGoogle Scholar
  44. 44.
    Q. Yang, S. Ren, Q. Zhao, R. Lu, C. Hang, Z. Chen, and H. Zheng, Chem. Eng. J. 333, 49 (2018).CrossRefGoogle Scholar
  45. 45.
    J. Fang, T. Liu, Z. Chen, Y. Wang, W. Wei, X. Yue, and Z. Jiang, Nanoscale 8, 8899 (2016).CrossRefGoogle Scholar
  46. 46.
    T. Liu, X. Xie, Y. Pang, and S. Kobayashi, J. Mater. Chem. C 4, 1727 (2016).CrossRefGoogle Scholar
  47. 47.
    Z. Wang, X. Xiong, L. Qie, and Y. Huang, Electrochim. Acta 106, 320 (2013).CrossRefGoogle Scholar
  48. 48.
    Z. Zhu, X. Sun, G. Li, H. Xue, H. Guo, X. Fan, X. Pan, and J. He, J. Magn. Magn. Mater. 377, 95 (2015).CrossRefGoogle Scholar
  49. 49.
    S.K. Park and Y.C. Kang, ACS Appl. Mater. Interfaces 10, 17203 (2018).CrossRefGoogle Scholar
  50. 50.
    M. Kang, Appl. Catal. A 251, 143 (2003).CrossRefGoogle Scholar
  51. 51.
    X. Zhang, J. Zhu, P. Yin, A. Guo, A. Huang, L. Guo, and G. Wang, Adv. Funct. Mater. 28, 1800761 (2018).CrossRefGoogle Scholar
  52. 52.
    B. Zhao, X. Zhang, J. Deng, Z. Bai, L. Liang, Y. Li, and R. Zhang, Phys. Chem. Chem. Phys. 20, 28623 (2018).CrossRefGoogle Scholar
  53. 53.
    X.F. Zhang, P.F. Guan, and X.L. Dong, Appl. Phys. Lett. 97, 033107 (2010).CrossRefGoogle Scholar
  54. 54.
    Y. Wei, H. Liu, S. Liu, M. Zhang, Y. Shi, J. Zhang, L. Zhang, and C. Gong, Chem. Commun. 9, 70 (2018).Google Scholar
  55. 55.
    Y. Shi, M. Zhang, X. Zhang, L. Zhang, Y. Zhang, Z. Jiang, H. Si, and C. Gong, J. Appl. Phys. 126, 105109 (2019).CrossRefGoogle Scholar
  56. 56.
    M. Zhang, Z. Jiang, X. Lv, X. Zhang, Y. Zhang, J. Zhang, L. Zhang, and C. Gong, J. Phys. D Appl. Phys. 53, 02LT01 (2019).CrossRefGoogle Scholar
  57. 57.
    B. Zhao, B. Fan, G. Shao, W. Zhao, and R. Zhang, ACS Appl. Mater. Interfaces 7, 18815 (2015).CrossRefGoogle Scholar
  58. 58.
    X. Zhang, J. Guo, P. Guan, G. Qin, and S.J. Pennycook, Phys. Rev. Lett. 115, 147601 (2015).CrossRefGoogle Scholar
  59. 59.
    Y. Wei, L. Zhang, C. Gong, S. Liu, M. Zhang, Y. Shi, and J. Zhang, J. Alloys Compd. 735, 1488 (2018).CrossRefGoogle Scholar
  60. 60.
    L. Huang, Y. Duan, X. Dai, Y. Zeng, G. Ma, Y. Liu, S. Gao, and W. Zhang, Small 15, 1902730 (2019).CrossRefGoogle Scholar
  61. 61.
    Y. Wei, Y. Shi, Z. Jiang, X. Zhang, H. Chen, Y. Zhang, J. Zhang, and C. Gong, J. Alloys Compd. 810, 151950 (2019).CrossRefGoogle Scholar
  62. 62.
    Y. Wei, Y. Shi, X. Zhang, Z. Jiang, Y. Zhang, L. Zhang, J. Zhang, and C. Gong, J. Mater. Sci.: Mater. Electron. 30, 14519 (2019).Google Scholar
  63. 63.
    X.-Y. Fang, X.-X. Yu, H.-M. Zheng, H.-B. Jin, L. Wang, and M.-S. Cao, Phys. Lett. A 379, 2245 (2015).CrossRefGoogle Scholar
  64. 64.
    Y. Qi, L. Qi, L. Liu, B. Dai, D. Wei, G.-M. Shi, and Y. Qi, Carbon 150, 259 (2019).CrossRefGoogle Scholar
  65. 65.
    S. Liu, M. Zhang, X. Lv, Y. Wei, Y. Shi, J. Zhang, L. Zhang, and C. Gong, Appl. Phys. Lett. 113, 083905 (2018).CrossRefGoogle Scholar
  66. 66.
    X.-X. Wang, J.-C. Shu, W.-Q. Cao, M. Zhang, J. Yuan, and M.-S. Cao, Chem. Eng. J. 369, 1068 (2019).CrossRefGoogle Scholar
  67. 67.
    W. Xu, G. Wang, and P. Yin, Carbon 139, 759 (2018).CrossRefGoogle Scholar
  68. 68.
    X.-X. Wang, T. Ma, J.-C. Shu, and M.-S. Cao, Chem. Eng. J. 332, 321 (2018).CrossRefGoogle Scholar
  69. 69.
    M. Cao, X. Wang, W. Cao, X. Fang, B. Wen, and J. Yuan, Small 14, 1800987 (2018).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Hongfang Qiu
    • 1
    • 2
  • Xiaoyu Zhu
    • 1
    • 2
  • Ping Chen
    • 1
    • 2
    Email author
  • Sen Yang
    • 1
    • 2
  • Xiang Guo
    • 1
    • 2
  • Jialiang Liu
    • 1
    • 2
  • Xiuling Zhu
    • 1
    • 2
  1. 1.State Key Laboratory of Fine ChemicalsDalian University of TechnologyDalianChina
  2. 2.School of Chemical EngineeringDalian University of TechnologyDalianChina

Personalised recommendations