Curing Mechanism and Mechanical Properties of Al2O3/Cyanate Ester–Epoxy Composites

  • Yufei ChenEmail author
  • Zhiguo Li
  • Yulong Liu
  • Chengjun Teng
  • Weiwei Cui


Bisphenol A epoxy resin (E51) and biscyanatophenylpropane (BCE) as polymer matrix and aluminum oxide (Al2O3, self-made by sol–gel method) as modification agent have been used to prepare two-phase Al2O3/E51–BCE composites for application in various fields. The curing process and kinetics of the system were determined by nonisothermal differential scanning calorimetry. The average apparent activation energy of the system calculated by the Kissinger and Ozawa methods was 67.8 kJ/mol. Scanning electron microscopy revealed that the interface between the Al2O3 phase and E51–BCE matrix phase was blurred and displayed mutual penetration. The fracture morphology of the Al2O3/E51–BCE composites exhibited ductile fracture. Al2O3 phase was uniformly dispersed in the matrix resin. The bending strength, bending modulus, and impact strength of the Al2O3/E51–BCE composites showed peak values of 172.3 MPa, 2.5 GPa, and 24.2 kJ/m2, being 24.4%, 19.1%, and 53.2% higher compared with the matrix resin, respectively, when the Al2O3 content was 3 wt.%.


Biscyanatophenylpropane epoxy resin curing kinetics micromorphology mechanical properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



Funding was provided by the National Natural Science Foundation of China (Grant No. 21604019) and Harbin technology bureau subject leader (Grant No. 2015RAXXJ029).

Conflict of Interest

The author(s) declare no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.


  1. 1.
    S. Zhang, Y.H. Yan, X.D. Li, H.J. Fan, Q.C. Ran, Q. Fu, and Y. Gu, Eur. Polym. J. 103, 124 (2018).CrossRefGoogle Scholar
  2. 2.
    Y. Lin and M. Song, React. Funct. Polym. 129, 58 (2018).CrossRefGoogle Scholar
  3. 3.
    S.H. Wang, Y.P. Tu, L.Z. Fan, C.Q. Yi, Z.X. Wu, and L.F. Li, J. Phys. D-Appl. Phys. (2018). Scholar
  4. 4.
    J.X. Ma, X.F. Lei, Y.H. Wang, and Y.Y. Sun, Iran. Polym. J. 27, 145 (2018).CrossRefGoogle Scholar
  5. 5.
    Y.Q. Wang, S.Y. Zhou, and H.Y. Du, J. Mater. Sci.-Mater. Electron. 29, 12360 (2018).CrossRefGoogle Scholar
  6. 6.
    Y.S. Tang, W.C. Dong, L. Tang, Y.K. Zhang, J. Kong, and J.W. Gu, Compos. Commun. 8, 36 (2018).CrossRefGoogle Scholar
  7. 7.
    C.Q. Lu, L. Yuan, Q.B. Guan, G.Z. Liang, and A.J. Gu, J. Phys. Chem. C 122, 5238 (2018).CrossRefGoogle Scholar
  8. 8.
    G.L. Wu, Y.H. Cheng, K.K. Wang, Y.Q. Wang, and A.L. Feng, J. Mater. Sci.-Mater. Electron. 27, 5592 (2016).CrossRefGoogle Scholar
  9. 9.
    L. Yuan, G.Z. Liang, and A.J. Gu, Polym. Degrad. Stabil. 96, 84 (2011).CrossRefGoogle Scholar
  10. 10.
    L. Tang, J. Dang, M.K. He, J.Y. Li, J. Kong, Y.S. Tang, and J.W. Gu, Compos. Sci. Technol. 169, 120 (2019).CrossRefGoogle Scholar
  11. 11.
    C. Uhlig, M. Bauer, J. Bauer, O. Kahle, A.C. Taylor, and A.J. Kinloch, React. Funct. Polym. 129, 2 (2018).CrossRefGoogle Scholar
  12. 12.
    A. Inamdar, J. Cherukattu, A. Anand, and B. Kandasubramanian, Ind. Eng. Chem. Res. 57, 4479 (2018).CrossRefGoogle Scholar
  13. 13.
    A. Zegaoui, M. Derradji, R.K. Ma, W.A. Cai, W.B. Liu, J. Wang, A.Q. Dayo, S. Song, and L.L. Zhang, J. Appl. Polym. Sci. (2018). Scholar
  14. 14.
    Z.D. Wang, M.M. Yang, Y.H. Cheng, J.Y. Liu, B. Xiao, S.Y. Chen, J.L. Huang, Q. Xie, G.L. Wu, and H.J. Wu, Compos. Pt. A-Appl. Sci. Manuf. 118, 302 (2019).CrossRefGoogle Scholar
  15. 15.
    S.Y. Chen, Y.H. Cheng, Q. Xie, B. Xiao, Z.D. Wang, J.Y. Liu, and G.L. Wu, Compos. Pt. A-Appl. Sci. Manuf. 120, 84 (2019).CrossRefGoogle Scholar
  16. 16.
    Z.R. Jia, Z.G. Gao, D. Lan, Y.H. Cheng, G.L. Wu, and H.J. Wu, Chin. Phys. B (2018). Scholar
  17. 17.
    F. Wu, B. Song, J. Hah, C.C. Tuan, K.S. Moon, and C.P. Wong, J. Polym. Sci. Polym. Chem. 56, 2412 (2018).CrossRefGoogle Scholar
  18. 18.
    F. Wu, C.C. Tuan, B. Song, K.S. Moon, and C.P. Wong, J. Polym. Sci. Polym. Chem. 56, 1337 (2018).CrossRefGoogle Scholar
  19. 19.
    S. Yazman and A. Samanci, Arab. J. Sci. Eng. 44, 1353 (2019).CrossRefGoogle Scholar
  20. 20.
    L. Pan, W.Y. Ding, W.L. Ma, J.L. Hu, X.F. Pang, F. Wang, and J. Tao, Mater. Des. 160, 1106 (2018).CrossRefGoogle Scholar
  21. 21.
    J.M. Fan and S.A. Xu, Iran. Polym. J. 27, 339 (2018).CrossRefGoogle Scholar
  22. 22.
    P.T.R. Swain and S. Biswas, J. Compos. Mater. 51, 3909 (2017).CrossRefGoogle Scholar
  23. 23.
    A. Permal, M. Devarajan, H.L. Huang, T. Zahner, D. Lacey, and K. Ibarhim, J. Mater. Sci.-Mater. Electron. 28, 13487 (2017).CrossRefGoogle Scholar
  24. 24.
    Y. Zhang, L. Yuan, F. Chen, A.J. Gu, and G.Z. Liang, Polym. Bull. 74, 1011 (2017).CrossRefGoogle Scholar
  25. 25.
    X.L. Zeng, S.H. Yu, and R. Sun, J. Therm. Anal. Calorim. 114, 387 (2013).CrossRefGoogle Scholar
  26. 26.
    R.Y. Ghumara, P.P. Adroja, and P.H. Parsania, J. Therm. Anal. Calorim. 114, 873 (2013).CrossRefGoogle Scholar
  27. 27.
    G.M. Wu, Z.W. Kong, C.F. Chen, J. Chen, S.P. Huo, and J.C. Jiang, J. Therm. Anal. Calorim. 111, 735 (2013).CrossRefGoogle Scholar
  28. 28.
    Y. Liu, J. Wang, and S.A. Xu, J. Polym. Sci. Polym. Chem. 52, 472 (2014).CrossRefGoogle Scholar
  29. 29.
    C. Alzina, N. Sbirrazzuoli, and A. Mija, J. Phys. Chem. B 114, 12480 (2010).CrossRefGoogle Scholar
  30. 30.
    F. Ren, G.M. Zhu, P.G. Ren, Y.K. Wang, and X.P. Cui, Appl. Surf. Sci. 316, 549 (2014).CrossRefGoogle Scholar
  31. 31.
    D.F. Hou, H.B. Ma, X.Y. Li, J.J. Chen, J. He, and H.W. Liao, Polym. Mater. Sci. Eng. 33, 48 (2017).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringHarbin University of Science and TechnologyHarbinChina
  2. 2.Key Laboratory of Engineering Dielectrics and Its ApplicationHarbin University of Science and Technology, Ministry of EducationHarbinChina
  3. 3.Harbin Xiangfang District Center for Disease Control and PreventionHarbinChina

Personalised recommendations