Recent Research Trends in Point Defects in Copper Iodide Semiconductors

  • Satoshi KoyasuEmail author
  • Masahiro Miyauchi
Invited Commentary


Copper iodide is a transparent p-type semiconductor that can be applied in thin-film transistors, transparent conductors, and light-emitting devices. Point defects affect the semiconductor properties of copper iodide. Therefore, many researchers have attempted to reveal the properties of point defects in copper iodide. A typical optical property related to point defects is photoluminescence (PL). PL peaks (430 nm and 700 nm) derived from defects have been reported for single-crystalline copper iodide. Density functional theory (DFT) studies reveal that the most stable defect species is the copper vacancy (VCu). These studies report that PL energies and defect species can be associated using experimental and DFT analyses. Researchers have also introduced defects into copper iodide single crystals or thin films artificially by controlling the annealing atmosphere and observed the relationship between the PL or absorption energy and Cu/I ratio. A comparison of this result with DFT results revealed that the photoactive defects were copper vacancies (VCu), iodine vacancies (VI), and iodine ions substituted at copper sites (ICu). Elucidation of the origin of fluorescence and coloration has enabled active control of optical properties via synthesis conditions. However, more drastic control of optical or electrical properties by doping is required for fabrication of actual devices. Some DFT studies on chalcogen doping have been reported; however, more theoretical and experimental studies are required.


Copper iodide semiconductor point defect photo luminescence density function theory 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. 1.
    H. Sakamoto, S. Igarashi, M. Uchida, K. Niume, and M. Nagai, Org. Electron. Phys. Mater. Appl. 13, 514 (2012).Google Scholar
  2. 2.
    J.H. Cha and D.Y. Jung, ACS Appl. Mater. Interfaces 9, 43807 (2017).CrossRefGoogle Scholar
  3. 3.
    H. Wang, Z. Yu, X. Jiang, J. Li, B. Cai, X. Yang, and L. Sun, Energy Technol. 5, 1836 (2017).CrossRefGoogle Scholar
  4. 4.
    M. Grundmann, F.L. Schein, M. Lorenz, T. Böntgen, J. Lenzner, and H. Von Wenckstern, Phys. Status Solidi Appl. Mater. Sci. 210, 1671 (2013).Google Scholar
  5. 5.
    D. Chen, Y. Wang, Z. Lin, J. Huang, X. Chen, D. Pan, and F. Huang, Cryst. Growth Des. 10, 2057 (2010).CrossRefGoogle Scholar
  6. 6.
    Y. Lv, Z. Xu, L. Ye, Z. Zhang, G. Su, and X. Zhuang, CrystEngComm 17, 862 (2015).CrossRefGoogle Scholar
  7. 7.
    H. Chen, C. Wang, J. Wang, Y. Wu, and S. Zhou, Phys. B Phys. Condens. Matter 413, 116 (2013).CrossRefGoogle Scholar
  8. 8.
    J. Wang, J. Li, and S.S. Li, J. Appl. Phys. 110, 54907 (2011).CrossRefGoogle Scholar
  9. 9.
    D. Huang, Y. Zhao, S. Li, C. Li, J. Nie, X.-H. Cai, and C.-M. Yao, J. Phys. D Appl. Phys. 45, 145102 (2012).CrossRefGoogle Scholar
  10. 10.
    P. Gao, M. Gu, X. Liu, Y.Q. Zheng, and E.W. Shi, Cryst. Res. Technol. 47, 707 (2012).CrossRefGoogle Scholar
  11. 11.
    M. Xia, M. Gu, X. Liu, B. Liu, S. Huang, and C. Ni, J. Mater. Sci.: Mater. Electron. 26, 5092 (2015).Google Scholar
  12. 12.
    G. Lin, F. Zhao, Y. Zhao, D. Zhang, L. Yang, X. Xue, X. Wang, C. Qu, Q. Li, and L. Zhang, Materials (Basel) 9, 990 (2016).CrossRefGoogle Scholar
  13. 13.
    S. Koyasu, N. Umezawa, A. Yamaguchi, and M. Miyauchi, J. Appl. Phys. 125, 115101 (2019).CrossRefGoogle Scholar
  14. 14.
    P.H. Svensson and L. Kloo, Chem. Rev. 103, 1649 (2003).CrossRefGoogle Scholar
  15. 15.
    K.X. Zhang, S.W. Wang, L.Y. Bai, Y. Wang, K. Ou, Y.W. Zhang, and L.X. Yi, J. Lumin. 214, 116522 (2019).Google Scholar
  16. 16.
    S. Jaschik, M.R.G. Marques, M. Seifert, C. Rödl, S. Botti, and M.A.L. Marques, Chem. Mater. 31, 7877 (2019).CrossRefGoogle Scholar
  17. 17.
    M. Graužinytė, S. Botti, M.A.L. Marques, S. Goedecker, and J.A. Flores-Livas, Phys. Chem. Chem. Phys. 21, 18839 (2019).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Hosei UniversityTokyoJapan
  2. 2.Tokyo Institute of TechnologyTokyoJapan

Personalised recommendations