Microwave Dielectric Properties of Low-Temperature Co-fired Mg2Al4Si5O18-BaCu(B2O5) Ceramics

  • Jiji Deng
  • Huanfu ZhouEmail author
  • Shixuan Li
  • Chengming Lu
  • Kangguo Wang
  • Wendong Sun


In this work, the sintering temperatures of Mg2Al4Si5O18 ceramics was reduced to ∼ 900°C by adding BaCu(B2O5) (BCB). Mg2Al4Si5O18 reacts with BCB to form the second phase BaAl2Si2O8. As the sintering temperature was 950°C, the second phase transformed from hexagonal BaAl2Si2O8 to monoclinic BaAl2Si2O8 with increasing BCB content. When the BCB content was 15 wt.%, the second phase formed from hexagonal BaAl2Si2O8 to monoclinic BaAl2Si2O8 with increasing sintering temperature. Especially, the sintering temperature of Mg2Al4Si5O18 + 30 wt.%BCB ceramic was reduced to 900°C and the ceramics exhibited good microwave dielectric properties with Q × f = 21,300 GHz, εr= 3.4 and τf = − 30 ppm/°C. The results showed that Mg2Al4Si5O18-BCB ceramics are candidates for LTCC devices.


Microwave dielectric ceramic Mg2Al4Si5O18 Low relative permittivity Sintering temperature 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the Natural Science Foundation of China (Nos. 61761015 and 11664008), Natural Science Foundation of Guangxi (Nos. 2017GXNSFFA198011 and 2017GXNSFDA198027).


  1. 1.
    Z.F. Fu, J.L. Ma, and P. Liu, J. Alloy. Compd. 752, 354 (2018).CrossRefGoogle Scholar
  2. 2.
    H.P. Wang, Z.P. He, D.H. Li, R.S. Lei, J.M. Chen, and S.Q. Xu, Ceram. Int. 40, 3895 (2014).CrossRefGoogle Scholar
  3. 3.
    S.H. Na Doo, Y.H. Jo, J.S. Lee, B.C. Mohanty, K.C. Sekhar, and Y.S. Chow, J. Am. Ceram. Soc. 93, 334 (2010).CrossRefGoogle Scholar
  4. 4.
    T.S. Sasikala, C. Pavithran, and M.T. Sebastian, J. Mater. Sci.: Mater. Electron. 21, 141 (2010).Google Scholar
  5. 5.
    D.K. Yim, J.R. Kim, D.W. Kim, and K.S. Hong, J. Eur. Ceram. Soc. 27, 3053 (2007).CrossRefGoogle Scholar
  6. 6.
    G.Q. Zhang, Q. Gao, J. Gou, and H. Wang, J. Am. Ceram. Soc. 100, 2604 (2017).CrossRefGoogle Scholar
  7. 7.
    W.B. Li, D. Zhou, L.X. Pang, Y.Z Dai, Z.M. Qi, Q.P. Wang and H.C. Liu, J. Am. Ceram. Soc. 100, 3982–3989 (2017). CrossRefGoogle Scholar
  8. 8.
    H.C. Xiang, C.C. Li, Y. Tang, and L. Fang, J. Eur. Ceram. Soc. 37, 3959 (2017).CrossRefGoogle Scholar
  9. 9.
    L.X. Pang, H. Wang, D. Zhou, and X. Yao, J. Alloy. Compd. 493, 626 (2010).CrossRefGoogle Scholar
  10. 10.
    X.L. Zhai, X. Zheng, H.H. Xi, W.B. Li, J. Han, and D. Zhou, J. Am. Ceram. Soc. 98, 2716 (2015).CrossRefGoogle Scholar
  11. 11.
    D. Zhou, H. Wang, X. Yao, and Y. Liu, J. Electroceram. 21, 469 (2008).CrossRefGoogle Scholar
  12. 12.
    D. Zhou, C.A. Randall, H. Wang, L.X. Pang, and X. Yao, J. Am. Ceram. Soc. 93, 2147 (2010).CrossRefGoogle Scholar
  13. 13.
    S.X. Duan, E.Z. Li, H.Y. Yang, B. Tang, Y. Yuan, H.C. He, and S.R. Zhang, J. Alloy. Compd. 699, 983 (2017).CrossRefGoogle Scholar
  14. 14.
    H.Y. Yang, E.Z. Li, C.L. Sun, S.X. Duan, Y. Yuan, and B. Tang, J. Electron. Mater. 46, 1048 (2016).CrossRefGoogle Scholar
  15. 15.
    K.G. Wang, H.F. Zhou, W.D. Sun, X.L. Chen, and H. Ruan, J. Mater. Sci-Mater. El. 29, 2001 (2017).CrossRefGoogle Scholar
  16. 16.
    H.F. Zhou, W.D. Sun, J. Huang, K.G. Wang, X.L. Chen, X.B. Liu, and H. Ruan, J. Mater. Sci-Mater. El. 29, 6232 (2018).CrossRefGoogle Scholar
  17. 17.
    J.M. Wu, H. Xiao, M.Y. Liu, Y. Chen, Y.X. Ma, L.J. Cheng, and Y.S. Shi, J. Adv. Ceram. 7, 152 (2018).CrossRefGoogle Scholar
  18. 18.
    Y. Lai, X. Tang, H.W. Zhang, X.F. Liang, X. Huang, Y.X. Li, and H. Sun, Mater. Res. Bull. 99, 496 (2018).CrossRefGoogle Scholar
  19. 19.
    Y.P. Guo, H. Ohsato, and K.I. Kakimoto, J. Eur. Ceram. Soc. 26, 1827 (2006).CrossRefGoogle Scholar
  20. 20.
    C.W. Zheng, X.C. Fan, and X.M. Chen, J. Am. Ceram. Soc. 91, 490 (2008).CrossRefGoogle Scholar
  21. 21.
    W. Lei, W.Z. Lu, D. Liu, and J.H. Zhu, J. Am. Ceram. Soc. 93, 105 (2009).CrossRefGoogle Scholar
  22. 22.
    H.F. Zhou, X.H. Tan, K.G. Wang, W.D. Sun, H. Ruan, and X.L. Chen, RSC Adv. 7, 44706 (2017).CrossRefGoogle Scholar
  23. 23.
    L.X. Pang, H. Wang, D. Zhou, H.F. Zhou, and X. Yao, Int. J. Appl. Ceram. Technol. 5, 341 (2008).CrossRefGoogle Scholar
  24. 24.
    D. Pamu, G. Lakshmi Narayana Rao, and K.C. James Raju, Adv. Appl. Ceram. 106, 202 (2007).CrossRefGoogle Scholar
  25. 25.
    H.F. Zhou, X.H. Tan, X.B. Liu, K.G. Wang, S.X. Li, and X.L. Chen, J. Mater Sci-Mater. El. 29, 18486 (2018).CrossRefGoogle Scholar
  26. 26.
    M.H. Kim, J.B. Lim, J.C. Kim, and S. Nahmw, J. Am. Ceram. Soc. 89, 3124 (2006).CrossRefGoogle Scholar
  27. 27.
    D. Bahat, J. Mater. Sci. 5, 805 (1970).CrossRefGoogle Scholar
  28. 28.
    W. Lei, R. Ang, X.C. Wang, and W.Z. Lu, Mater. Res. Bull. 50, 235 (2014).CrossRefGoogle Scholar
  29. 29.
    Y. Fang, L. Li, Q. Xiao, and X.M. Chen, Ceram. Int. 38, 4511 (2012).CrossRefGoogle Scholar
  30. 30.
    L. Li, Y. Fang, Q. Xiao, Y.J. Wu, N. Wang, and X. M. Chen. Int. J. Appl. Ceram. Technol. 11, 193 (2014). Scholar
  31. 31.
    L. Li, C.H. Liu, J.Y. Zhu, and X.M. Chen, J. Eur. Ceram. Soc. 35, 1799 (2015).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Jiji Deng
    • 1
  • Huanfu Zhou
    • 1
    Email author
  • Shixuan Li
    • 1
  • Chengming Lu
    • 1
  • Kangguo Wang
    • 1
  • Wendong Sun
    • 1
  1. 1.Collaborative Innovation Center for Exploration of Hidden Nonferrous Metal Deposits and Development of New Materials in Guangxi, Key Laboratory of Nonferrous Materials and New Processing Technology, Ministry of Education, School of Materials Science and EngineeringGuilin University of TechnologyGuilinChina

Personalised recommendations