Microwave Dielectric Properties of Low-Temperature Co-fired Mg2Al4Si5O18-BaCu(B2O5) Ceramics
- 11 Downloads
Abstract
In this work, the sintering temperatures of Mg2Al4Si5O18 ceramics was reduced to ∼ 900°C by adding BaCu(B2O5) (BCB). Mg2Al4Si5O18 reacts with BCB to form the second phase BaAl2Si2O8. As the sintering temperature was 950°C, the second phase transformed from hexagonal BaAl2Si2O8 to monoclinic BaAl2Si2O8 with increasing BCB content. When the BCB content was 15 wt.%, the second phase formed from hexagonal BaAl2Si2O8 to monoclinic BaAl2Si2O8 with increasing sintering temperature. Especially, the sintering temperature of Mg2Al4Si5O18 + 30 wt.%BCB ceramic was reduced to 900°C and the ceramics exhibited good microwave dielectric properties with Q × f = 21,300 GHz, εr= 3.4 and τf = − 30 ppm/°C. The results showed that Mg2Al4Si5O18-BCB ceramics are candidates for LTCC devices.
Keywords
Microwave dielectric ceramic Mg2Al4Si5O18 Low relative permittivity Sintering temperaturePreview
Unable to display preview. Download preview PDF.
Notes
Acknowledgments
This work was supported by the Natural Science Foundation of China (Nos. 61761015 and 11664008), Natural Science Foundation of Guangxi (Nos. 2017GXNSFFA198011 and 2017GXNSFDA198027).
References
- 1.Z.F. Fu, J.L. Ma, and P. Liu, J. Alloy. Compd. 752, 354 (2018).CrossRefGoogle Scholar
- 2.H.P. Wang, Z.P. He, D.H. Li, R.S. Lei, J.M. Chen, and S.Q. Xu, Ceram. Int. 40, 3895 (2014).CrossRefGoogle Scholar
- 3.S.H. Na Doo, Y.H. Jo, J.S. Lee, B.C. Mohanty, K.C. Sekhar, and Y.S. Chow, J. Am. Ceram. Soc. 93, 334 (2010).CrossRefGoogle Scholar
- 4.T.S. Sasikala, C. Pavithran, and M.T. Sebastian, J. Mater. Sci.: Mater. Electron. 21, 141 (2010).Google Scholar
- 5.D.K. Yim, J.R. Kim, D.W. Kim, and K.S. Hong, J. Eur. Ceram. Soc. 27, 3053 (2007).CrossRefGoogle Scholar
- 6.G.Q. Zhang, Q. Gao, J. Gou, and H. Wang, J. Am. Ceram. Soc. 100, 2604 (2017).CrossRefGoogle Scholar
- 7.W.B. Li, D. Zhou, L.X. Pang, Y.Z Dai, Z.M. Qi, Q.P. Wang and H.C. Liu, J. Am. Ceram. Soc. 100, 3982–3989 (2017). https://doi.org/10.1111/jace.14929 CrossRefGoogle Scholar
- 8.H.C. Xiang, C.C. Li, Y. Tang, and L. Fang, J. Eur. Ceram. Soc. 37, 3959 (2017).CrossRefGoogle Scholar
- 9.L.X. Pang, H. Wang, D. Zhou, and X. Yao, J. Alloy. Compd. 493, 626 (2010).CrossRefGoogle Scholar
- 10.X.L. Zhai, X. Zheng, H.H. Xi, W.B. Li, J. Han, and D. Zhou, J. Am. Ceram. Soc. 98, 2716 (2015).CrossRefGoogle Scholar
- 11.D. Zhou, H. Wang, X. Yao, and Y. Liu, J. Electroceram. 21, 469 (2008).CrossRefGoogle Scholar
- 12.D. Zhou, C.A. Randall, H. Wang, L.X. Pang, and X. Yao, J. Am. Ceram. Soc. 93, 2147 (2010).CrossRefGoogle Scholar
- 13.S.X. Duan, E.Z. Li, H.Y. Yang, B. Tang, Y. Yuan, H.C. He, and S.R. Zhang, J. Alloy. Compd. 699, 983 (2017).CrossRefGoogle Scholar
- 14.H.Y. Yang, E.Z. Li, C.L. Sun, S.X. Duan, Y. Yuan, and B. Tang, J. Electron. Mater. 46, 1048 (2016).CrossRefGoogle Scholar
- 15.K.G. Wang, H.F. Zhou, W.D. Sun, X.L. Chen, and H. Ruan, J. Mater. Sci-Mater. El. 29, 2001 (2017).CrossRefGoogle Scholar
- 16.H.F. Zhou, W.D. Sun, J. Huang, K.G. Wang, X.L. Chen, X.B. Liu, and H. Ruan, J. Mater. Sci-Mater. El. 29, 6232 (2018).CrossRefGoogle Scholar
- 17.J.M. Wu, H. Xiao, M.Y. Liu, Y. Chen, Y.X. Ma, L.J. Cheng, and Y.S. Shi, J. Adv. Ceram. 7, 152 (2018).CrossRefGoogle Scholar
- 18.Y. Lai, X. Tang, H.W. Zhang, X.F. Liang, X. Huang, Y.X. Li, and H. Sun, Mater. Res. Bull. 99, 496 (2018).CrossRefGoogle Scholar
- 19.Y.P. Guo, H. Ohsato, and K.I. Kakimoto, J. Eur. Ceram. Soc. 26, 1827 (2006).CrossRefGoogle Scholar
- 20.C.W. Zheng, X.C. Fan, and X.M. Chen, J. Am. Ceram. Soc. 91, 490 (2008).CrossRefGoogle Scholar
- 21.W. Lei, W.Z. Lu, D. Liu, and J.H. Zhu, J. Am. Ceram. Soc. 93, 105 (2009).CrossRefGoogle Scholar
- 22.H.F. Zhou, X.H. Tan, K.G. Wang, W.D. Sun, H. Ruan, and X.L. Chen, RSC Adv. 7, 44706 (2017).CrossRefGoogle Scholar
- 23.L.X. Pang, H. Wang, D. Zhou, H.F. Zhou, and X. Yao, Int. J. Appl. Ceram. Technol. 5, 341 (2008).CrossRefGoogle Scholar
- 24.D. Pamu, G. Lakshmi Narayana Rao, and K.C. James Raju, Adv. Appl. Ceram. 106, 202 (2007).CrossRefGoogle Scholar
- 25.H.F. Zhou, X.H. Tan, X.B. Liu, K.G. Wang, S.X. Li, and X.L. Chen, J. Mater Sci-Mater. El. 29, 18486 (2018).CrossRefGoogle Scholar
- 26.M.H. Kim, J.B. Lim, J.C. Kim, and S. Nahmw, J. Am. Ceram. Soc. 89, 3124 (2006).CrossRefGoogle Scholar
- 27.D. Bahat, J. Mater. Sci. 5, 805 (1970).CrossRefGoogle Scholar
- 28.W. Lei, R. Ang, X.C. Wang, and W.Z. Lu, Mater. Res. Bull. 50, 235 (2014).CrossRefGoogle Scholar
- 29.Y. Fang, L. Li, Q. Xiao, and X.M. Chen, Ceram. Int. 38, 4511 (2012).CrossRefGoogle Scholar
- 30.L. Li, Y. Fang, Q. Xiao, Y.J. Wu, N. Wang, and X. M. Chen. Int. J. Appl. Ceram. Technol. 11, 193 (2014). https://doi.org/10.1111/j.1744-7402.2012.02846.x.CrossRefGoogle Scholar
- 31.L. Li, C.H. Liu, J.Y. Zhu, and X.M. Chen, J. Eur. Ceram. Soc. 35, 1799 (2015).CrossRefGoogle Scholar