Advertisement

The Influence of Porous Carbon Nanosheet/Carbon Nanotubes 3D Network on Tin Oxide Lithium Ion Batteries

  • Zou Jingyi
  • Sun XiaogangEmail author
  • Huang Yapan
  • Li Rui
  • He Qiang
Article
  • 4 Downloads

Abstract

To relieve the pressure of the volume change of SnO2 in lithium-ion batteries, a porous carbon nanosheets/carbon nanotubes (PC/CNT) scaffold was used to host SnO2 as a collector. This novel collector comprised a PC/CNT network. The new PC/CNT composite possessed an excellent loading capacity of SnO2, restrained the volume expansion of SnO2, and prevented its aggregation. The SnO2-PC/CNT electrodes exhibited superb electrochemical performance, with high tin oxide utilization (86.6%), high specific capacity (1761.81 mAh g−1 at 100 mA g−1) and outstanding coulomb efficiency. After 100 cycles, the specific discharge capacity maintained greater than 499.07 mAh g−1, with a coulombic efficiency of 98.93%.

Keywords

Tin oxidel carbon nanosheets carbon nanotubes lithium-ion batteries 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This study was supported by Jiangxi scientific fund (20142BBE50071) and Jiangxi education fund (KJLD13006).

Conflict of interest

We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

References

  1. 1.
    W. Waag, S. Käbitz, and D.U. Sauer, Appl. Eng. 102, 885 (2013).CrossRefGoogle Scholar
  2. 2.
    Y. Wang, H.C. Zeng, and J.Y. Lee, Adv. Mater. 18, 645 (2006).CrossRefGoogle Scholar
  3. 3.
    L. Li, X. Yin, S. Liu, Y. Wang, L. Chen, and T. Wang, Electrochem. Commun. 12, 1383 (2010).CrossRefGoogle Scholar
  4. 4.
    J.S. Chen, Y.L. Cheah, Y.T. Chen, N. Jayaprakash, S. Madhavi, Y.H. Yang, and X.W. Lou, J. Phys. Chem. C 113, 20504 (2009).CrossRefGoogle Scholar
  5. 5.
    S. Fu, Q. Wu, S. He, S. Tong, X. Yang, Y. Meng, and M. Wu, Chemelectrochem 5, 2341 (2018).CrossRefGoogle Scholar
  6. 6.
    X.W. Lou, Y. Wang, C. Yuan, J.Y. Lee, and L.A. Archer, Adv. Mater. 18, 2325 (2006).CrossRefGoogle Scholar
  7. 7.
    L. Yang, K. Chen, T. Dong, Z. Wang, G. Li, Y. Zhang, and L. Zhang, J. Nanosci. Nanotechnol. 16, 1768 (2016).CrossRefGoogle Scholar
  8. 8.
    F. Han, W.C. Li, M.R. Li, and A.H. Lu, J. Mater. Chem. 22, 9645 (2012).CrossRefGoogle Scholar
  9. 9.
    J. Yao, X. Shen, B. Wang, H. Liu, and G. Wang, Electrochem. Commun. 11, 1849 (2009).CrossRefGoogle Scholar
  10. 10.
    W. An, B. Gao, S. Mei, B. Xiang, J. Fu, L. Wang, and K. Huo, Nat. Commun. 10, 1447 (2019).CrossRefGoogle Scholar
  11. 11.
    X. Liu, P. Xu, X. Li, Y. Peng, and Z. Le, J. Mater. Sci. 53, 15621 (2018).CrossRefGoogle Scholar
  12. 12.
    C. He, Y. Xiao, H. Dong, Y. Liu, M. Zheng, K. Xiao, and B. Lei, Electrochim. Acta 142, 157 (2014).CrossRefGoogle Scholar
  13. 13.
    X. Xu, R. Cao, S. Jeong, and J. Cho, Nano Lett. 12, 4988 (2012).CrossRefGoogle Scholar
  14. 14.
    Y. Liang, W. Zhang, D. Wu, Q.Q. Ni, and M.Q. Zhang, Adv. Mater. Interfaces 5, 1800430 (2018).CrossRefGoogle Scholar
  15. 15.
    Z. Wen, Q. Wang, Q. Zhang, and J. Li, Adv. Funct. Mater. 17, 2772 (2007).CrossRefGoogle Scholar
  16. 16.
    J. Liang, X.Y. Yu, H. Zhou, H.B. Wu, S. Ding, and X.W. Lou, Angew. Chem. Int. Edit. 53, 12803 (2014).CrossRefGoogle Scholar
  17. 17.
    L. Xia, S. Wang, G. Liu, L. Ding, D. Li, H. Wang, and S. Qiao, Small 12, 853 (2016).CrossRefGoogle Scholar
  18. 18.
    C. Shi, K. Xiang, Y. Zhu, X. Chen, W. Zhou, and H. Chen, Electrochim. Acta 246, 1088 (2017).CrossRefGoogle Scholar
  19. 19.
    Y. He, K. Xiang, W. Zhou, Y. Zhu, X. Chen, and H. Chen, Chem. Eng. J. 353, 666 (2018).CrossRefGoogle Scholar
  20. 20.
    Y. Chen, K. Xiang, Y. Zhu, L. Xiao, W. Chen, X. Chen, and H. Chen, J. Alloy. Compd. 782, 89 (2019).CrossRefGoogle Scholar
  21. 21.
    X. Wen, X. Lu, K. Xiang, L. Xiao, H. Liao, W. Chen, and H. Chen, J. Colloid. Interf Sci. 554, 711 (2019).CrossRefGoogle Scholar
  22. 22.
    J. Zou, X. Sun, R. Li, and Q. He, Synthetic. Met. 257, 116145 (2019).CrossRefGoogle Scholar
  23. 23.
    Y. He, K. Xiang, Y. Wang, W. Zhou, Y. Zhu, L. Xiao, and Z. Lu, Carbon 154, 330 (2019).CrossRefGoogle Scholar
  24. 24.
    D.W. Xu, S. Xin, Y. You, Y. Li, H.P. Cong, and S.H. Yu, Chemnanomat 2, 712 (2016).CrossRefGoogle Scholar
  25. 25.
    C. Luo, S. Niu, G. Zhou, W. Lv, B. Li, F. Kang, and Q.H. Yang, Chem. Commun. 52, 12143 (2016).CrossRefGoogle Scholar
  26. 26.
    D.W. Xu, S. Xin, Y. You, Y. Li, H.P. Cong, and S.H. Yu, Chemnanomat 2, 712 (2016).CrossRefGoogle Scholar
  27. 27.
    C. Luo, S. Niu, G. Zhou, W. Lv, B. Li, F. Kang, and Q.H. Yang, Chem. Commun. 52, 12143 (2016).CrossRefGoogle Scholar
  28. 28.
    J. Guo, Y. Xu, and C. Wang, Nano Lett. 11, 4288 (2011).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Zou Jingyi
    • 1
  • Sun Xiaogang
    • 1
    Email author
  • Huang Yapan
    • 1
  • Li Rui
    • 1
  • He Qiang
    • 1
  1. 1.School of Mechantronics EngineeringNanchang UniversityNanchangChina

Personalised recommendations