Development of High-Temperature-Resistant Seed Layer for Electrodeposition of Copper for Microelectronic Applications

  • Garrison Frost
  • Leila LadaniEmail author


Copper is the most commonly used material for interconnects within microelectronics. However, electromigration and high resistance within the material limit the use of copper in nanoscale applications. New, two-dimensional (2D) materials such as graphene, carbon nanotubes (CNTs), and transition-metal dichalcogenide (TMDs) are being developed for the next generation of interconnects. A composite consisting of a forest of vertically aligned carbon nanotubes within a matrix of copper is a proposed solution to the issues which present themselves in nanoscale copper interconnects. The fabrication of CNTs and graphene often requires high temperatures that exceed the material limitations of copper in microelectronic processing. If these 2D materials are used in conjunction with copper, it is desirable to delay copper deposition to late stages of microfabrication in order to avoid exposing copper to high temperatures. It is proposed that a seed layer be deposited before deposition/growth of CNTs/graphene or other TMD materials, such that later deposition of copper via electroplating is feasible. A conductive seed layer must be introduced underneath the forest of CNTs in order to allow for electroplating to take place. Copper itself may not be used as a seed layer since it migrates at elevated temperatures, which prevents growth of carbon nanotubes. Thus, the seed layer must be able to withstand high temperatures, must not migrate or diffuse into silicon or barrier layers, and must also be a suitable seed layer for copper electroplating. This research focuses on evaluating different metals as potential seed layers for copper electroplating for nanoscale applications. Layers of various metals of 100 Å, 275 Å, and 1000 Å thickness were deposited onto silicon wafers via physical vapor deposition. They were then electroplated with copper and examined visually for quality and consistency. A digital microscope was used for microscopic examination, then a scanning electron microscope was used to examine the development of copper over the seed layers and for elemental mapping to verify copper deposition. Seeds consisting of 1000 Å platinum, 1000 Å nichrome, and 100 Å silver showed strong promise for use as seed layers for nanoscale applications. Platinum and nichrome were found to develop uniform copper coatings and strongly adhere to the silicon wafer. To protect platinum and nichrome from diffusion into silicon during chemical vapor deposition (CVD) CNT growth, a barrier layer may be required. Copper developed uniformly over the 100-Å silver seed. Silver is unlikely to diffuse into silicon at the temperatures required during CVD CNT growth. Due to poor adhesion between the silver seed and silicon wafer, an adhesion layer may be used to improve reliability.


Cu-CNT composites electromigration nanoscale interconnects electrodeposition chemical vapor deposition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. 1.
    S.M. Merchant, S.H. Kang, M. Sanganeria, B. van Schravendijk, and T. Mountsier, JOM 53, 6 (2001).CrossRefGoogle Scholar
  2. 2.
    K. Maex, M.R. Baklanov, D. Shamiryan, F. Iacopi, S.H. Brongersma, and Z.S. Yanovitskaya, J. Appl. Phys. 93, 11 (2003).CrossRefGoogle Scholar
  3. 3.
    N.D. McCusker, H.S. Gamble, and B.M. Armstrong, 1999 IEEE International Reliability Physics Symposium Proceedings. 37th Annual (Cat. No. 99CH36296) (1999).Google Scholar
  4. 4.
    I. Awad and L. Ladani, J. Nanotechnol. Eng. Med. 5, 3 (2014).Google Scholar
  5. 5.
    S. Arai and T. Osaki, J. Electrochem. Soc. 162, 1 (2015).Google Scholar
  6. 6.
    L. Ladani, Int. J. High Speed Electron. Syst. 24, 3 (2015).CrossRefGoogle Scholar
  7. 7.
    Y. Chai, P. Chan, Y. Fu, Y.C. Chuang, and C.Y. Liu, ProceedingsElectronic Components and Technology Conference (2008).Google Scholar
  8. 8.
    L. Ladani, Patent US 2018/0056435 A1 (2018).Google Scholar
  9. 9.
    L. Ladani, I. Awad, Y. She, S. Dardona, and W. Schmidt, Mater. Today Commun. 11, 123 (2017).CrossRefGoogle Scholar
  10. 10.
    I. Awad and L. Ladani, J. Nanotechnol. Eng. Med. 4, 4 (2014).Google Scholar
  11. 11.
    I. Awad and L. Ladani, Nanotechnology 26, 48 (2015).CrossRefGoogle Scholar
  12. 12.
    T. Wang, K. Jeppson, N. Olofsson, E.E.B. Campbell, and J. Liu, Nanotechnology 20, 48 (2009).Google Scholar
  13. 13.
    C. Subramaniam, T. Yamada, K. Kobashi, A. Sekiguchi, D. Futaba, M. Yumura, and K. Hata, Nat. Commun. 4, 2202 (2013).CrossRefGoogle Scholar
  14. 14.
    Y. Chai, K. Zhang, M. Zhang, P.C.H. Chan, and M.M.F. Yuen, Electronic Components and Technology Conference Proceedings (2007).Google Scholar
  15. 15.
    S.P. Sharma and S.C. Lakkad, Surf. Coat. Technol. 205, 2 (2010).Google Scholar
  16. 16.
    B.Q. Wei, R. Vajtai, and P.M. Ajayan, Appl. Phys. Lett. 79, 8 (2001).Google Scholar
  17. 17.
    P. Dixit and J. Miao, J. Electrochem. Soc. 153, 6 (2006).Google Scholar
  18. 18.
    A. Naeemi and J.D. Meindl, IEEE Electron Dev. Lett. 26, 8 (2005).CrossRefGoogle Scholar
  19. 19.
    A. Naeemi, R. Sarvari, and J.D. Meindl, IEEE Electron Dev. Lett. 26, 2 (2005).CrossRefGoogle Scholar
  20. 20.
    G. Raghavan, C. Chiang, P. Anders, S. Tzeng, R. Villasol, G. Bai, M. Bohr, and D. Fraser, Thin Solid Films 262, 1 (1995).CrossRefGoogle Scholar
  21. 21.
    T. Oku, E. Kawakami, M. Uekubo, K. Takahiro, S. Yamaguchi, and M. Murakami, Appl. Surf. Sci. 99, 4 (1996).CrossRefGoogle Scholar
  22. 22.
    L. Llona, H. Jansen, and M. Elwenspoek, J. Micromech. Microeng. 16, 6 (2006).CrossRefGoogle Scholar
  23. 23.
    N. Kanani, Electroplating: Basic Principles, Processes and Practice (Amsterdam: Elsevier Science, 2005).Google Scholar
  24. 24.
    M. Schlesinger and N. Kanani, Modern Electroplating, 5th ed. (New York: Wiley, 2004).Google Scholar
  25. 25.
    P. Globa, E. Zasaveitsky, S. Sidelinikova, and A. Dikusar, Meoscale Nanoscale Phys. 40, 356 (2007).Google Scholar
  26. 26.
    M.B. Jordan, Y. Feng, and S.L. Burkett, J. Vac. Sci. Technol. B Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 33, 2 (2015).Google Scholar
  27. 27.
    T.-G. Woo, I.S. Park, and K.-W. Seol, Met. Mater. Int. 15, 2 (2009).CrossRefGoogle Scholar
  28. 28.
    R.A. Serway and L.D. Kirkpatrick, Phys. Tech. 26, 254 (1988).Google Scholar
  29. 29.
    E. Badr, P. Pichler, and G. Schmidt, J. Appl. Phys. 116, 13 (2014).CrossRefGoogle Scholar
  30. 30.
    W.F. Gale and T.C. Totemeir, Smithells Metals Reference Book, 8th ed. (Amsterdam: Elsevier, 2004).Google Scholar
  31. 31.
    E.R. Weber, Appl. Phys. A Solids Surf. 30, 1 (1983).CrossRefGoogle Scholar
  32. 32.
    D.J. Griffiths, An Introduction to Electrodynamics, 4th ed. (Cambridge: Cambridge University Press, 2017).CrossRefGoogle Scholar
  33. 33.
    F. Rollert, N.A. Stolwijk, and H. Mehrer, J. Phys. D Appl. Phys. 20, 9 (1987).CrossRefGoogle Scholar
  34. 34.
    S. Ichiro Fujikawa, K. Ichi Hirano, and Y. Fukushima, Metall. Trans. A 9, 12 (1978).Google Scholar
  35. 35.
    P.S. Ho and T. Kwok, Rep. Prog. Phys. 52, 3 (1989).CrossRefGoogle Scholar
  36. 36.
    S. Kumar, M.T. Alam, Z. Connell, and M.A. Haque, Scr. Mater. 65, 4 (2011).Google Scholar
  37. 37.
    Y. Luo and J. A. Kerr, CRC Handbook of Chemistry and Physics, vol. 66 (2007), p. 5.Google Scholar
  38. 38.
    T.L. Cottrell, The Strengths of Chemical Bonds, 2nd ed. (Oxford: Butterworth, 1958).Google Scholar
  39. 39.
    L. Gibson and M. Ashby, Royal Society of London. Series A, Mathematical and Physical Proceedings, pp. 43–59 (2017).Google Scholar
  40. 40.
    M. Ataka, H. Fujita, A. Omodaka, and N. Takeshima, J. Microelectromech. Syst. 2, 4 (1993).CrossRefGoogle Scholar
  41. 41.
    J.R. Black, IEEE Trans. Electron Dev. 16, 4 (1969).CrossRefGoogle Scholar
  42. 42.
    Y.Y. Wang, C. Song, J.Y. Zhang, and F. Pan, J. Mag. Mag. Mater. 428, 431 (2017).Google Scholar
  43. 43.
    L. Courtois, IEEE Trans. Magn. 11, 5 (1975).Google Scholar
  44. 44.
    F. Jing, H. Tong, L. Kong, and C. Wang, Appl. Phys. A Mater. Sci. Process. 80, 3 (2005).CrossRefGoogle Scholar
  45. 45.
    M. Hörteis, T. Gutberlet, A. Reller, and S. Glunz, Adv. Funct. Mater. 20, 3 (2010).CrossRefGoogle Scholar
  46. 46.
    N. Temple, Patent US2699424A (1955).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Mechanical and Aerospace Engineering DepartmentUniversity of Texas at ArlingtonArlingtonUSA
  2. 2.Ira A. Fulton School of EngineeringArizona State UniversityTempeUSA

Personalised recommendations